Fast Algorithms for 3D Cone-Beam Tomography
3D 锥形束层析成像的快速算法
基本信息
- 批准号:0209203
- 负责人:
- 金额:$ 33.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTBresler, Yoram0209203U of IllTomography, or the reconstruction of an object from a collection of its line integrals from various directions (known as its x-ray transform) is a well known problem. Perhaps most importantly, it is the principle underlying most of the key diagnostic imaging modalities including x-ray Computed Tomography (CT), PET and SPECT, certain forms of MRI, and emerging techniques such as electric impedance tomography (EIT) and optical tomography. Tomographic reconstruction is also widely used for nondestructive evaluation (NDE) in manufacturing, and has been recently proposed for safety screening of passenger luggage in airports. Tomography is also the fundamental principle in numerous other problems and applications in science and engineering from electron microscopy of subcellular structures through geophysical exploration and environmental monitoring, to remote sensing by synthetic aperture radar (SAR). In cone-beam tomography, projections are acquired by an area detector, using a source of divergent rays traveling on a one of several possible trajectories. It is already used in current PET and SPECT scanners and in NDE, and because it appears to be the only practical method for rapid volume acquisition, it will be the basis for the next generation of diagnostic CT scanners. This will allow to use CT as a dynamic imaging modality for cardiac imaging or for real-time surgical guidance in medicine, or as a high-throughput NDE system in manufacturing.
光层析成像的Bresler,Yoram0209203U,或从来自不同方向的线积分的集合重建对象(称为其X射线变换)是一个众所周知的问题。也许最重要的是,它是大多数关键诊断成像模式的基本原理,包括X射线计算机断层扫描(CT)、PET和SPECT、某些形式的MRI以及新兴技术,如电阻抗断层扫描(EIT)和光学断层扫描。层析重建也被广泛用于制造业中的无损评估,最近被提出用于机场旅客行李的安全检查。层析成像也是许多其他问题和科学和工程应用的基本原理,从亚细胞结构的电子显微镜到地球物理勘探和环境监测,再到合成孔径雷达(SAR)的遥感。在锥束层析成像中,投影是由面积探测器利用沿几种可能的轨迹之一传播的发散射线源来获取的。它已经在目前的PET和SPECT扫描仪以及无损检测中使用,由于它似乎是快速体积采集的唯一实用方法,它将成为下一代诊断性CT扫描仪的基础。这将允许将CT用作心脏成像的动态成像方式,或用于医学上的实时外科指导,或用作制造中的高通量无损检测系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoram Bresler其他文献
Yoram Bresler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoram Bresler', 18)}}的其他基金
BIGDATA: F: DKA: CSD: DKM: Theory and Algorithms for Processing Data with Sparse and Multilinear Structure
BIGDATA:F:DKA:CSD:DKM:稀疏和多线性结构数据处理的理论和算法
- 批准号:
1447879 - 财政年份:2014
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Scalable Learning of Sparse Representations
CIF:小:稀疏表示的可扩展学习的理论和算法
- 批准号:
1320953 - 财政年份:2013
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
CIF: Small: Dictionary Learning for Compressed Sensing
CIF:小:压缩感知的字典学习
- 批准号:
1018660 - 财政年份:2010
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
CIF: Small: Blind Perfect Signal Reconstruction in Subsampled Multi-Channel Systems
CIF:小:子采样多通道系统中的盲完美信号重建
- 批准号:
1018789 - 财政年份:2010
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
Minimum Redundancy Spatiotemporal MRI
最小冗余时空 MRI
- 批准号:
0201876 - 财政年份:2002
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
Efficient Algorithms for Lossless Data and Image Compression
无损数据和图像压缩的高效算法
- 批准号:
0122293 - 财政年份:2001
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
Performance Bounds on Image and Video Compression
图像和视频压缩的性能限制
- 批准号:
9707633 - 财政年份:1997
- 资助金额:
$ 33.29万 - 项目类别:
Continuing Grant
PYI: Statistical Techniques in Inverse Problems
PYI:反问题中的统计技术
- 批准号:
9157377 - 财政年份:1991
- 资助金额:
$ 33.29万 - 项目类别:
Continuing Grant
相似海外基金
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
- 批准号:
2412147 - 财政年份:2024
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
- 批准号:
2329739 - 财政年份:2024
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2408964 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2146191 - 财政年份:2022
- 资助金额:
$ 33.29万 - 项目类别:
Continuing Grant
Development of 3D Visualisation Algorithms for the Effective Interpretation of Tunnel Subsurface Radar Data
开发 3D 可视化算法以有效解释隧道地下雷达数据
- 批准号:
2440423 - 财政年份:2020
- 资助金额:
$ 33.29万 - 项目类别:
Studentship
Advanced algorithms to infer and analyze 3D genome structures
用于推断和分析 3D 基因组结构的先进算法
- 批准号:
10027542 - 财政年份:2020
- 资助金额:
$ 33.29万 - 项目类别:
Advanced algorithms to infer and analyze 3D genome structures
用于推断和分析 3D 基因组结构的先进算法
- 批准号:
10708000 - 财政年份:2020
- 资助金额:
$ 33.29万 - 项目类别:
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 33.29万 - 项目类别:
Standard Grant
CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
- 批准号:
1943123 - 财政年份:2020
- 资助金额:
$ 33.29万 - 项目类别:
Continuing Grant
Advanced algorithms to infer and analyze 3D genome structures
用于推断和分析 3D 基因组结构的先进算法
- 批准号:
10237362 - 财政年份:2020
- 资助金额:
$ 33.29万 - 项目类别: