Spin-orbital entanglement and dynamic properties of spin-orbital systems
自旋轨道纠缠和自旋轨道系统的动力学性质
基本信息
- 批准号:153396866
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In transition metal oxides, quantum effects and correlations between electrons lead to a large variety of material properties. While they can in some cases be described by one-band models where the only relevant properties of the electrons are their spin and charge, some materials have another degree of freedom: the orbital occupied by the electron. With strong Coulomb repulsion, this leads to spin-orbital physics, where spin and orbital degrees of freedom are entangled. I propose to calculate dynamic susceptibilities for realistic models describing spin-orbital systems. Such calculations are necessary to describe and understand experiments like angle resolved photoemission spectroscopy (ARPES) or neutron scattering and also give information about fundamental excitations. While analytic methods exist for special cases in one dimension, I propose to use numerical methods based on exact diagonalization and cluster-embedding, especially the variational cluster approach. They can be applied to more general and realistic models and can also be used in higher dimensions. Recently, superconductivity has been investigated in iron-pnictides, where several bands cross the Fermi energy, suggesting that the orbital degree of freedom is relevant. The proposed project also includes work on orbital models for pnictides and on the temperature dependence of the magnetic susceptibility.
在过渡金属氧化物中,量子效应和电子之间的相关性导致了各种各样的材料性质。虽然在某些情况下,它们可以用单能带模型来描述,其中电子的唯一相关性质是它们的自旋和电荷,但有些材料还有另一个自由度:电子占据的轨道。由于强烈的库仑排斥,这导致了自旋-轨道物理学,其中自旋和轨道自由度纠缠在一起。我建议计算描述自旋-轨道系统的现实模型的动态磁化率。这样的计算对于描述和理解角分辨光电子能谱(ARPES)或中子散射等实验是必要的,并且也给出了关于基本激发的信息。虽然分析方法存在的特殊情况下,在一维,我建议使用数值方法的基础上精确对角化和集群嵌入,特别是变分聚类方法。它们可以应用于更一般和更真实的模型,也可以用于更高的维度。最近,人们研究了铁磷族化合物的超导电性,其中有几个带穿过费米能,这表明轨道自由度是相关的。拟议的项目还包括关于磷属元素潮汐轨道模型和磁化率温度依赖性的工作。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractional quantum-Hall liquid spontaneously generated by strongly correlated t(2g) electrons.
强相关 t(2g) 电子自发产生的分数量子霍尔液体
- DOI:10.1103/physrevlett.108.126405
- 发表时间:2012
- 期刊:
- 影响因子:8.6
- 作者:J. W. F. Venderbos;S. Kourtis;J. van den Brink;M. Daghofer
- 通讯作者:M. Daghofer
Combined topological and Landau order from strong correlations in Chern bands.
根据陈能带中的强相关性组合拓扑和朗道阶
- DOI:10.1103/physrevlett.113.216404
- 发表时间:2014
- 期刊:
- 影响因子:8.6
- 作者:S. Kourtis;M. Daghofer
- 通讯作者:M. Daghofer
Nontrivial Triplon Topology and Triplon Liquid in Kitaev-Heisenberg-type Excitonic Magnets.
Kitaev-Heisenberg 型激子磁体中的非平凡三联体拓扑和三联体液体
- DOI:10.1103/physrevlett.122.177201
- 发表时间:2019
- 期刊:
- 影响因子:8.6
- 作者:P. S. Anisimov;F. Aust;G. Khaliullin;M. Daghofer
- 通讯作者:M. Daghofer
Intrinsic coupling of orbital excitations to spin fluctuations in Mott insulators.
- DOI:10.1103/physrevlett.107.147201
- 发表时间:2011-09
- 期刊:
- 影响因子:8.6
- 作者:K. Wohlfeld;M. Daghofer;S. Nishimoto;G. Khaliullin;J. van den Brink
- 通讯作者:K. Wohlfeld;M. Daghofer;S. Nishimoto;G. Khaliullin;J. van den Brink
Spectral density in a nematic state of iron pnictides
铁磷族化物向列态的光谱密度
- DOI:10.1103/physrevb.85.184515
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:M. Daghofer;A. Nicholson;A. Moreo
- 通讯作者:A. Moreo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Maria Daghofer其他文献
Professorin Dr. Maria Daghofer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Maria Daghofer', 18)}}的其他基金
Finite-Temperature Dynamics with Matrix Product State and Cluster Approaches
使用矩阵积状态和簇方法的有限温度动力学
- 批准号:
299367771 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
酶响应的中性粒细胞外泌体载药体系在眼眶骨缺损修复中的作用及机制研究
- 批准号:82371102
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Multiple Access Laser Communication Terminals for Optical Orbital Hotspots
SBIR 第一阶段:用于光轨道热点的多址激光通信终端
- 批准号:
2319654 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
- 批准号:
2340733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Probing Human Vision with Orbital Angular Momentum of Light
用光的轨道角动量探测人类视觉
- 批准号:
2886175 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
- 批准号:
22KJ2450 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
- 批准号:
10676016 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Is the development of orbital disease related to T cell immune exhaustion and aging?
眼眶疾病的发生与T细胞免疫衰竭和衰老有关吗?
- 批准号:
23K09013 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Foundation of orbital current and its application for controlling magnetic moment
轨道电流的基础及其在磁矩控制中的应用
- 批准号:
23H00176 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Uncovering the Origin of Black Hole Mergers using Orbital Eccentricity
利用轨道偏心率揭示黑洞合并的起源
- 批准号:
2309024 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant