CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects

职业:基于轨道的量子缺陷动力学特性描述符

基本信息

  • 批准号:
    2340733
  • 负责人:
  • 金额:
    $ 54.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research and education to understand how quantum devices can be physically realized by defects in solids, as well as how to rank and optimize their performance in search of an ideal candidate. A quantum bit (qubit) – the fundamental unit in achieving quantum computation – requires a physical representation based on a quantum mechanical system with a binary degree of freedom to host its zeros and ones. Crystallographic point defects constitute one promising physical qubit platform. To qualify as an ideal defect-based qubit, a long list of performance requirements related to the defect’s physical properties need to be met. This project will focus on two such properties related to (i) how atomic vibrations affect light absorption, and (ii) how quickly defect spins can change states following light absorption. To model these properties, two sets of computer simulation methods will be developed. One set will perform accurate but computationally demanding calculations based on microscopic models, serving as reference for select defects. Another set of methods will rely on physically motivated approximations for higher computational efficiency; they will be calibrated and validated by the accurate methods and will streamline the evaluation of a wider variety of potential defect candidates. This project will benefit society and technological development by broadening the design space and delivering rational design rules for quantum devices.Integrated with research, the following educational activities will be developed. First, the PI will develop a workshop that guides high school students in reading research papers and formulating research questions in materials physics. The workshop will aim at guiding career aspirations in scientific, engineering, and mathematical disciplines and cultivating authentic research experiences in materials physics. Second, the project will develop a platform enabling high school students to generate virtual reality demonstrations of defect and crystal structures for outreach events at the Fort Worth Museum of Science and History. Third, the PI will introduce a new high performance computing module to the undergraduate computational physics curriculum at his institution. The project will also support travel to annual conferences at the Society for the Advancement of Chicanos/Hispanics and Native Americans in Science, where student experience and research outcomes will be shared with prospective Hispanic students interested in physics and inspire their careers in physics.TECHNICAL SUMMARYCrystallographic point defects constitute one promising physical platform for implementing spin-based qubits, delivering both potential scalability and long spin coherence times. As the search for ideal defect qubits advances, increasingly complex defect metrics need to be predicted and optimized. Despite recent advances in first-principles defect modeling, two dynamical properties of defects – electron-phonon coupling and intersystem crossing rates – remain hard to calculate and hard to interpret. To tackle this challenge, the PI and his team will develop orbital-based descriptors for Huang-Rhys factors (for electron-phonon coupling), excited-state spin-orbit coupling matrix elements, and singlet-triplet splitting, thereby delivering rational design rules to optimize them for qubit applications. The development of each descriptor will be accompanied by first-principles validation. Excited-state methods ranging from constrained density functional theory (DFT), time-dependent DFT, and the GW-Bethe Salpeter Equation approach will provide references, while ground-state DFT will be the basis of descriptor design. Established descriptors will be applied to a wider variety of defects and entered into a public database allowing user query, facilitating future modeling efforts.Integrated with research, the following educational activities will be developed. First, the PI will develop a workshop that guides high school students in reading research papers and formulating research questions in materials physics. The workshop will aim at guiding career aspirations in scientific, engineering, and mathematical disciplines and cultivating authentic research experiences in materials physics. Second, the project will develop a platform enabling high school students to generate virtual reality demonstrations of defect and crystal structures for outreach events at the Fort Worth Museum of Science and History. Third, the PI will introduce a new high performance computing module to the undergraduate computational physics curriculum at his institution. The project will also support travel to annual conferences at the Society for the Advancement of Chicanos/Hispanics and Native Americans in Science, where student experience and research outcomes will be shared with prospective Hispanic students interested in physics and inspire their careers in physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持理论和计算研究和教育,以了解量子器件如何通过固体中的缺陷物理实现,以及如何排名和优化其性能以寻找理想的候选人。量子比特(qubit)-实现量子计算的基本单位-需要基于量子力学系统的物理表示,该系统具有二进制自由度来承载其0和1。晶体学点缺陷构成了一个有前途的物理量子位平台。要成为理想的基于缺陷的量子位,需要满足与缺陷的物理属性相关的一长串性能要求。该项目将重点关注两个这样的性质,即(i)原子振动如何影响光吸收,以及(ii)缺陷自旋在光吸收后改变状态的速度。为了模拟这些特性,将开发两套计算机模拟方法。其中一组将根据微观模型进行精确但计算量大的计算,作为选定缺陷的参考。另一组方法将依赖于物理动机的近似,以提高计算效率;它们将通过准确的方法进行校准和验证,并将简化对更广泛的潜在缺陷候选者的评估。本项目将通过拓宽量子器件的设计空间,提供合理的量子器件设计规则,为社会和技术发展带来益处。结合研究,将开展以下教育活动。首先,PI将开发一个指导高中学生阅读研究论文和制定材料物理研究问题的研讨会。该研讨会旨在指导科学,工程和数学学科的职业抱负,并培养材料物理学的真实研究经验。其次,该项目将开发一个平台,使高中生能够为沃斯堡科学和历史博物馆的外展活动生成缺陷和晶体结构的虚拟现实演示。第三,PI将在他所在机构的本科计算物理课程中引入一个新的高性能计算模块。该项目还将支持参加墨西哥裔/西班牙裔和美洲原住民科学促进协会(Society for the Advancement of Chicanos/Hispanics and Native Americans in Science)的年度会议,在那里,学生的经验和研究成果将与对物理感兴趣的未来西班牙裔学生分享,并激发他们在物理学领域的职业生涯。技术总结晶体点缺陷构成了一个有前途的物理平台,用于实现基于自旋的量子比特,提供潜在的可缩放性和长的自旋相干时间。随着对理想缺陷量子位的搜索的进展,需要预测和优化越来越复杂的缺陷度量。尽管最近在第一性原理缺陷建模方面取得了进展,但缺陷的两个动力学性质--电子-声子耦合和系统间交叉率--仍然难以计算和解释。为了应对这一挑战,PI和他的团队将为Huang-Rhys因子(用于电子-声子耦合)、激发态自旋轨道耦合矩阵元素和单重态-三重态分裂开发基于轨道的描述符,从而提供合理的设计规则,以优化量子比特应用。每个描述符的开发将伴随着第一原则验证。激发态方法,包括约束密度泛函理论(DFT),含时DFT,和GW-Bethe Salpeter方程方法将提供参考,而基态DFT将是描述符设计的基础。已建立的描述符将应用于更广泛的缺陷,并输入公共数据库,供用户查询,以促进未来的建模工作。结合研究,将开发以下教育活动。首先,PI将开发一个指导高中学生阅读研究论文和制定材料物理研究问题的研讨会。该研讨会旨在指导科学,工程和数学学科的职业抱负,并培养材料物理学的真实研究经验。其次,该项目将开发一个平台,使高中生能够为沃斯堡科学和历史博物馆的外展活动生成缺陷和晶体结构的虚拟现实演示。第三,PI将在他所在机构的本科计算物理课程中引入一个新的高性能计算模块。该项目还将支持参加墨西哥裔/西班牙裔和美洲原住民科学促进协会的年度会议,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响进行评估来支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanxi Wang其他文献

Atlas of 2D metals epitaxial to SiC: filling-controlled gapping conditions and alloying rules
二维金属外延到 SiC 的图集:填充控制间隙条件和合金化规则
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanxi Wang;V. Crespi
  • 通讯作者:
    V. Crespi
Non-oxidative intercalation and exfoliation of graphite by Brønsted acids
布伦斯特酸对石墨的非氧化嵌入和剥离
  • DOI:
    10.1038/nchem.2054
  • 发表时间:
    2014-09-07
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Nina I. Kovtyukhova;Yuanxi Wang;Ayse Berkdemir;Rodolfo Cruz-Silva;Mauricio Terrones;Vincent H. Crespi;Thomas E. Mallouk
  • 通讯作者:
    Thomas E. Mallouk
Safety assessment of the Qinghai–Tibet railway: Monitoring, analysis, and prediction
  • DOI:
    10.1016/j.coldregions.2024.104395
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mengyuan Zhu;Hui Liu;Changwei Miao;Geshuang Li;Yu Zhang;Yang Zhou;Jianao Cai;Shiji Yang;Yuanxi Wang;Yichuan Wang;Wenfei Zhao
  • 通讯作者:
    Wenfei Zhao
Effect of curing temperatures on the early-age tensile creep behavior of high-performance concrete
养护温度对高性能混凝土早期抗拉徐变性能的影响
  • DOI:
    10.1016/j.cscm.2025.e04729
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Yuanxi Wang;Suduo Xue;Xiongyan Li;Yan Geng;Hua Rong;Xiuliang Lu
  • 通讯作者:
    Xiuliang Lu
Efficient and stabilized molecular doping of hole-transporting materials driven by a cyclic-anion strategy for perovskite solar cells
基于循环阴离子策略的高效稳定的空穴传输材料分子掺杂用于钙钛矿太阳能电池
  • DOI:
    10.1039/d4sc02020k
  • 发表时间:
    2024-06-26
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Huaibiao Zeng;Fangyan Lin;Zhongquan Wan;Hua Yang;Hui Lu;Shaoliang Jiang;Jinqing Zhu;Haomiao Yin;Runmin Wei;Yuanxi Wang;Junsheng Luo;Chunyang Jia
  • 通讯作者:
    Chunyang Jia

Yuanxi Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

THz orbital angular momentum analysis based on the topological charge conservation law
基于拓扑电荷守恒定律的太赫兹轨道角动量分析
  • 批准号:
    23K17885
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding quantum materials based on 4d-5d transition metal oxides through spin orbital coupling and dimensionality
通过自旋轨道耦合和维度了解基于 4d-5d 过渡金属氧化物的量子材料
  • 批准号:
    EP/W005786/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Research Grant
Study of protein performance modification based on canonical molecular orbital analysis
基于正则分子轨道分析的蛋白质性能修饰研究
  • 批准号:
    21H02056
  • 财政年份:
    2021
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of early transition metal-based semiconductors for high efficiency LED utilizing non-bonding crystal orbital
利用非键合晶体轨道创建用于高效率 LED 的早期过渡金属半导体
  • 批准号:
    20H02434
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of various bonds based on cage-shaped borate with active vacant orbital and its application to polymer function
基于活性空轨道笼状硼酸酯的多种键的构建及其在聚合物功能中的应用
  • 批准号:
    19K15639
  • 财政年份:
    2019
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Transition Metal Complexes Having Phosphinyl Radicals as Ligands: Functions Based on Orbital Interactions
以膦基作为配体的过渡金属配合物:基于轨道相互作用的函数
  • 批准号:
    19H02730
  • 财政年份:
    2019
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collection of inter- and intramolecular interactions data and applications of database to drug discovery based on fragment molecular orbital method
基于片段分子轨道法的分子间和分子内相互作用数据的收集及其数据库在药物发现中的应用
  • 批准号:
    18K06619
  • 财政年份:
    2018
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electron nematic states in iron-based superconductors near the orbital-selective Mott transition
铁基超导体中轨道选择性莫特跃迁附近的电子向列态
  • 批准号:
    18K13492
  • 财政年份:
    2018
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Storage of photon with orbital angular momentum based on an all-fiber system
基于全光纤系统的轨道角动量光子存储
  • 批准号:
    17K14127
  • 财政年份:
    2017
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Thy1 expression, adpogenesis, inflammation and orbital remodeling mechanisms in Thyroid Eye Disease
甲状腺眼病中 Thy1 表达、脂肪生成、炎症和眼眶重塑机制
  • 批准号:
    9213038
  • 财政年份:
    2017
  • 资助金额:
    $ 54.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了