SGER: Toward a Unifying Taxonomy for Feature Selection

SGER:迈向特征选择的统一分类法

基本信息

  • 批准号:
    0127815
  • 负责人:
  • 金额:
    $ 5.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-15 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this Small Grant for Exploratory Research (SGER) project is to establish a unifying taxonomy of features selection. Feature selection is used in used in various applications, including pattern recognition, machine learning, datamining or decision making, to choose the most appropriate subset of features among the available ones for the task. It can be viewed as an optimization problem of exponential time complexity along several dimensions. Many feature selection algorithms have been developed and deployed in real-world applications. However, there exists a distinct gap between what theory suggests and what practice reveals, and the proliferation of feature selection algorithms makes it very difficult to fully understand the various feature selection techniques and construct a general methodology for feature selection. It is time-critical that these issues are addressed and a unifying taxonomy is developed, to facilitate new research, development and tools in feature selection. This project explores the first step toward dealing with these issues. The task of establishing a unifying taxonomy for feature selection is accomplished in two steps: (1) defining a common platform to consider representative algorithms on the equal footing; and (2) building a unifying taxonomy to discover how the algorithms complement each other and what is missing. The approach includes collection of representative data and algorithms and conducting comparative experiments to determine the characteristics of the feature selection algorithms, their performance on different data and tasks. The expected results of this project include a contemporary survey, a unifying taxonomy of feature selection algorithms, and some potential solutions to the automatic selection problem -- being able to automatically choose the most suitable feature selection algorithm with given the problem conditions. The progress and updates of the project, and the resulting survey and unifying taxonomy will be available online.
这个探索性研究(SGER)项目的目标是建立一个统一的特征选择分类法。特征选择用于各种应用中,包括模式识别、机器学习、数据挖掘或决策制定,以在可用的特征中选择最合适的特征子集用于任务。它可以被看作是一个优化问题的指数时间复杂度沿着几个维度。许多特征选择算法已经被开发并部署在现实世界的应用中。然而,存在着什么样的理论建议和什么样的实践揭示之间的一个明显的差距,和扩散的特征选择算法,使它非常难以充分理解的各种特征选择技术,并建立一个通用的方法来进行特征选择。解决这些问题并制定统一的分类法,以促进特征选择方面的新研究、开发和工具,时间紧迫。本项目探讨了处理这些问题的第一步。为特征选择建立统一分类法的任务分为两个步骤:(1)定义一个公共平台,以平等地考虑代表性算法;(2)建立一个统一的分类法,以发现算法如何相互补充以及缺少什么。该方法包括收集有代表性的数据和算法,并进行比较实验,以确定特征选择算法的特性,它们在不同数据和任务上的性能。这个项目的预期结果包括一个当代的调查,一个统一的分类特征选择算法,和一些潜在的解决方案的自动选择问题-能够自动选择最合适的特征选择算法与给定的问题条件。该项目的进展和最新情况以及由此产生的调查和统一分类法将在网上公布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huan Liu其他文献

Kinetics and functional effectiveness of nisin loaded antimicrobialpackaging film based on chitosan/poly(vinyl alcohol)
基于壳聚糖/聚(乙烯醇)的负载乳链菌肽的抗菌包装的动力学和功能有效性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Hualin Wang;Ru Zhang;Heng Zhang;Suwei Jiang;Huan Liu;Min Sun;Shaotong Jiang
  • 通讯作者:
    Shaotong Jiang
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion
基于Contourlet变换和多特征融合的多源遥感图像配准
Controlling Directional Liquid Transport on Dual Cylindrical Fibers with Oriented Open‐Wedges
使用定向开口楔块控制双圆柱形纤维上的定向液体传输
  • DOI:
    10.1002/admi.202101749
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Qing’an Meng;Bojie Xu;Zhongxue Tang;Yan Wei;Lei Jiang;Huan Liu
  • 通讯作者:
    Huan Liu
COLF‐GAN: Learning to axial super‐resolve focal stacks
COLF-GAN:学习轴向超分辨焦点堆栈
  • DOI:
    10.1049/ipr2.12460
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Zhaolin Xiao;Huan Liu;Haiyan Jin
  • 通讯作者:
    Haiyan Jin
Preparation of nano‐pico droplets using an open fibrous system
使用开放纤维系统制备纳米-皮液滴
  • DOI:
    10.1002/dro2.27
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bojie Xu;Xuan Chen;He Zhao;Zhen Zhang;Huan Liu
  • 通讯作者:
    Huan Liu

Huan Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huan Liu', 18)}}的其他基金

SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2335666
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
  • 批准号:
    2229461
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Artificial Intelligence for Cybersecurity Education via a Machine Learning-Enabled Security Knowledge Graph
EAGER:SaTC-EDU:通过机器学习支持的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2114789
  • 财政年份:
    2021
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
III: Small: Discovering and Characterizing Implicit Links in Graph Data
III:小:发现和表征图数据中的隐式链接
  • 批准号:
    1614576
  • 财政年份:
    2016
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
III: Small: Transforming Feature Selection to Harness the Power of Social Media
III:小:转变特征选择以利用社交媒体的力量
  • 批准号:
    1217466
  • 财政年份:
    2012
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
NSF Conference Sponsorship for the Third International Conference on Social Computing, Behavioral Modeling, and Prediction
NSF 会议赞助第三届社会计算、行为建模和预测国际会议
  • 批准号:
    1019597
  • 财政年份:
    2010
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
NSF Workshop Sponsorship for the Second International Workshop on Social Computing, Behavioral Modeling, and Prediction
NSF 研讨会赞助第二届社会计算、行为建模和预测国际研讨会
  • 批准号:
    0908506
  • 财政年份:
    2009
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
III-COR-Small: Beyond Feature Selection and Extraction - An Integrated Framework for High-Dimensional Data of Small Labeled Samples
III-COR-Small:超越特征选择和提取 - 小标记样本高维数据的集成框架
  • 批准号:
    0812551
  • 财政年份:
    2008
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Continuing Grant
A Collaborative Project: Development of An Undergraduate Data Mining Course
合作项目:本科数据挖掘课程的开发
  • 批准号:
    0231448
  • 财政年份:
    2003
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Continuing Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Continuing Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mentored Excellence Toward Research and Industry Careers 2
指导卓越研究和行业职业 2
  • 批准号:
    2322416
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了