EAGER: SaTC-EDU: Artificial Intelligence for Cybersecurity Education via a Machine Learning-Enabled Security Knowledge Graph

EAGER:SaTC-EDU:通过机器学习支持的安全知识图进行网络安全教育的人工智能

基本信息

  • 批准号:
    2114789
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Cybersecurity education is exceptionally challenging because its learning outcomes often comprise fragmented information that fails to provide learners with adaptive guidance on how to connect and build on the concepts they have learned. This project will develop an artificial intelligence (AI)-enabled cybersecurity tool referred to as a knowledge graph (AISecKG) to address this cybersecurity education challenge. Knowledge graphs, widely used by search engines and social networks, integrate data and can store linked descriptions of items such as objects, concepts, and events. This project applies a novel learning approach for cybersecurity education by providing university students a flexible learning plan that enhances their critical thinking and problem-solving skills. This approach aims to help students understand the complex nature of cyber-attacks and defense mechanisms, provide them with a holistic view and better prepare them to address the complexities of real-world scenarios. The development and deployment of AISecKG are interdisciplinary. First, the project employs machine learning (ML) and AI approaches to build a new cybersecurity knowledge graph by measuring and setting up similarities and dependencies among cybersecurity learning targets for both study planning and learning-outcome assessment. Second, it incorporates a multi-level assessment approach to design cybersecurity curricula, scaffold student cognitive engagement, and improve student learning outcomes. AISecKG has two primary design goals. First, it will guide instructors to develop a problem-based learning curriculum based on their learning objectives. Second, it will allow students to apply an adaptive learning strategy, incorporating hands-on labs to assess their learning outcomes. To assess students’ learning performance quantitatively, AISecKG will (a) deploy an evidence-based model and learning materials for problem-based cybersecurity education focusing on developing teacher capacity and practice while using targeted materials and approaches; (b) produce a productive teaching model for deep learning that promotes a culture of scientific inquiry and design as well as a set of strategies to develop student competency; and (c) provide evidence of student learning outcomes as a pedagogical resource to support student cognitive engagement in learning tasks interactively. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络安全教育受到了极大的挑战,因为它的学习成果通常完整的零散信息,这些信息无法为学习者提供有关如何建立他们所学的概念的适应性指导。该项目将开发一个人工智能(AI)支持的网络安全工具,称为知识图(Aiseckg),以应对这一网络安全教育挑战。知识图,搜索引擎和社交网络广泛使用,集成了数据,可以存储对象,概念和事件等项目的链接描述。该项目通过为大学生提供一个灵活的学习计划,以提高他们的批判性思维和解决问题的技能,从而采用一种新颖的学习方法来进行网络安全教育。这种方法旨在帮助学生了解网络攻击和防御机制的复杂性质,为他们提供整体观点,并更好地准备他们以解决现实世界情景的复杂性。 Aiseckg的发展和部署是跨学科的。首先,该项目采用机器学习(ML)和AI方法,通过测量和建立网络安全学习目标之间的相似性和依赖性来构建新的网络安全知识图,以进行研究计划和学习结果评估。其次,它结合了设计网络安全课程,脚手架学生认知参与并改善学生学习成果的多层次评估方法。 Aiseckg有两个主要的设计目标。首先,它将指导教师根据他们的学习目标开发基于问题的学习课程。其次,它将允许学生采用自适应学习策略,并入实践实验室来评估他们的学习成果。为了定量评估学生的学习绩效,Aiseckg将(a)为基于问题的网络安全教育部署基于证据的模型和学习材料,重点是发展教师能力和实践,同时使用针对性的材料和方法; (b)为深度学习生产富有成效的教学模型,以促进科学探究和设计的文化以及发展学生能力的一系列策略; (c)提供学生学习成果作为教学资源的证据,以支持学生认知参与方面的学习任务。该项目得到了安全且值得信赖的网络空间(SATC)计划的特别主动,以促进网络安全,人工智能和教育领域之间的新,以前出乎意料的合作。 SATC计划与联邦网络安全研究与发展战略计划以及国家隐私研究策略保持一致,以保护和维护网络系统的社会和经济益处,同时确保安全和隐私。该奖项反映了NSF的法定任务,并通过使用基金会的知识和更广泛的影响来评估NSF的法定使命,并通过评估诚实地表示支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey
  • DOI:
    10.48550/arxiv.2311.07914
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garima Agrawal;Tharindu Kumarage;Zeyad Alghami;Huanmin Liu
  • 通讯作者:
    Garima Agrawal;Tharindu Kumarage;Zeyad Alghami;Huanmin Liu
Development and Validation of the Uncertainty Management in Problem-Based Learning Scale in Postsecondary STEM Education
中学后 STEM 教育中基于问题的学习量表的不确定性管理的开发和验证
Problems of Problem-Based Learning: Exploring Meta-Agency in Problem-Based Cybersecurity Learning in College Education
基于问题的学习的问题:探索大学教育中基于问题的网络安全学习的元代理
AISecKG: Knowledge Graph Dataset for Cybersecurity Education
AISecKG:网络安全教育知识图数据集
Auction-Based Learning for Question Answering over Knowledge Graphs
  • DOI:
    10.3390/info14060336
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garima Agrawal;D. Bertsekas;Huan Liu
  • 通讯作者:
    Garima Agrawal;D. Bertsekas;Huan Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huan Liu其他文献

Real double Hurwitz numbers with $3$-cycles
具有 $3$ 周期的真正双 Hurwitz 数字
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanqiao Ding;Kui Li;Huan Liu;Dongfeng Yan
  • 通讯作者:
    Dongfeng Yan
CoVaxNet: An Online-Offline Data Repository for COVID-19 Vaccine Research
CoVaxNet:用于 COVID-19 疫苗研究的线上线下数据存储库
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bohan Jiang;Paras Sheth;Baoxin Li;Huan Liu
  • 通讯作者:
    Huan Liu
Faceted Browsing over Social Media
通过社交媒体进行分面浏览
Readings on L2 Reading: Publications in Other Venues 2016-2017.
L2 阅读的阅读:2016-2017 年其他场所的出版物。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shenika Harris;C. Bernales;David Balmaceda;Wei;Huan Liu;Haley Dolosic
  • 通讯作者:
    Haley Dolosic
An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions
三维空间非线性分布阶空间分数扩散方程的高效有限体积法
  • DOI:
    10.1007/s10915-019-00979-2
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xiangcheng Zheng;Huan Liu;Hong Wang;Hongfei Fu
  • 通讯作者:
    Hongfei Fu

Huan Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huan Liu', 18)}}的其他基金

SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2335666
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
  • 批准号:
    2229461
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Discovering and Characterizing Implicit Links in Graph Data
III:小:发现和表征图数据中的隐式链接
  • 批准号:
    1614576
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Transforming Feature Selection to Harness the Power of Social Media
III:小:转变特征选择以利用社交媒体的力量
  • 批准号:
    1217466
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Conference Sponsorship for the Third International Conference on Social Computing, Behavioral Modeling, and Prediction
NSF 会议赞助第三届社会计算、行为建模和预测国际会议
  • 批准号:
    1019597
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Workshop Sponsorship for the Second International Workshop on Social Computing, Behavioral Modeling, and Prediction
NSF 研讨会赞助第二届社会计算、行为建模和预测国际研讨会
  • 批准号:
    0908506
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III-COR-Small: Beyond Feature Selection and Extraction - An Integrated Framework for High-Dimensional Data of Small Labeled Samples
III-COR-Small:超越特征选择和提取 - 小标记样本高维数据的集成框架
  • 批准号:
    0812551
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A Collaborative Project: Development of An Undergraduate Data Mining Course
合作项目:本科数据挖掘课程的开发
  • 批准号:
    0231448
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SGER: Toward a Unifying Taxonomy for Feature Selection
SGER:迈向特征选择的统一分类法
  • 批准号:
    0127815
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
  • 批准号:
    2039289
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
  • 批准号:
    2114974
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Transformative Educational Approaches to Meld Artificial Intelligence and Cybersecurity Mindsets
EAGER:SaTC-EDU:融合人工智能和网络安全思维的变革性教育方法
  • 批准号:
    2115025
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了