Quadratic Observable Operator Models for efficient prediction and classification of stochastic time series

用于有效预测和分类随机时间序列的二次可观察算子模型

基本信息

项目摘要

Hidden Markov Models (HMMs) are the core modelling method in speech recognition systems and are increasingly employed in biosequence analysis. Their main drawbacks are slow learning algorithms and suboptimal models due to the local optimization character of known learning algorithms. Observable operator models (OOMs) are a recently developed alternative to HMMs whose associated, novel learning algorithm needs only a fraction of learning time, yields more accurate models, and is asymptotically correct (finds the global optimimum). One drawback of OOMs that has prevented their widespread use so far is that they may predict negative values for probabilities. The proposed project investigated quadratic and norm-OOMs, in which non-negativity of predicted probabilities is guaranteed by design. In the first two years of funding (the project is now in month 19/24) the basic mathematical theory of quadratic and norm-OOMs was established and learning algorithms (of an altogether novel kind) were developed and tested on synthetic datasets; all meeting and surpassing the originally envisioned goals.
隐马尔可夫模型是语音识别系统中的核心建模方法,并且越来越多地用于生物序列分析。它们的主要缺点是学习算法速度慢,由于已知的学习算法的局部最优特性,次优模型。可观测算子模型(OOM)是最近开发的替代HALTH的一种方法,其相关的新颖的学习算法只需要一小部分学习时间,产生更准确的模型,并且是渐近正确的(找到全局最优值)。迄今为止,OOM的一个阻碍其广泛使用的缺点是它们可能预测概率的负值。该项目研究了二次和范数OOM,其中预测概率的非负性是由设计保证的。在资助的前两年(该项目现在是19/24月),建立了二次和范数OOM的基本数学理论,并开发了学习算法(一种全新的),并在合成数据集上进行了测试;所有这些都达到并超过了最初设想的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Herbert Jaeger其他文献

Professor Dr. Herbert Jaeger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Herbert Jaeger', 18)}}的其他基金

Observable operator networks: generalizing observable operator models to multivariate random processes with interacting continuous variables
可观察算子网络:将可观察算子模型推广到具有交互连续变量的多元随机过程
  • 批准号:
    114646652
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
  • 批准号:
    2236477
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
  • 批准号:
    2315725
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interacting observable and measurement in Quantum Field Theory
量子场论中可观测量与测量的相互作用
  • 批准号:
    2885338
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Partially Observable Multi-agent Inverse Reinforcement Learning
部分可观察多智能体逆强化学习
  • 批准号:
    2894217
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
FRR: Semi-Structured, Under-Specified, Partially-Observable Robotic Rearrangement
FRR:半结构化、未指定、部分可观察的机器人重排
  • 批准号:
    2309866
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The use of memory mechanism for long horizon, partially observable credit assignment in reinforcement learning
在强化学习中使用记忆机制进行长期、部分可观察的学分分配
  • 批准号:
    559278-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Observable signatures of learning in neural circuits
神经回路中学习的可观察特征
  • 批准号:
    RGPIN-2019-06379
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical systems with observable Lyapunov irregular sets
具有可观测李亚普诺夫不规则集的动力系统
  • 批准号:
    22K03342
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reinforcement Learning in Partially Observable Environments
部分可观察环境中的强化学习
  • 批准号:
    572486-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Partially Observable Risk-Averse Control Systems and Extensions
部分可观察的风险规避控制系统和扩展
  • 批准号:
    572633-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了