The Molecular Basis for Heavy Metal Accumulation and Tolerance in the Hyperaccumulating Plant Species, Thlaspi Caerulescens

超积累植物Thlaspi Caerulescens重金属积累和耐受性的分子基础

基本信息

  • 批准号:
    0129844
  • 负责人:
  • 金额:
    $ 41.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2005-11-30
  • 项目状态:
    已结题

项目摘要

0129844Leon V. KochianContamination of soils with toxic heavy metals is a serious worldwide problem both for human health and agriculture. Cleanup of hazardous wastes by the currently used engineering-based technologies has been estimated to cost at least $400 billion in the U.S. alone. Recently, there has been considerable interest in the use of terrestrial plants as an alternative, "green technology" for the remediation of surface soils contaminated with toxic heavy metals. The principal behind phytoremediation is to grow plants on a contaminated site in much the same way crop plants are grown on agricultural soils. If the plants have an affinity for the heavy metals in the soil, they can extract the metals from the soils and accumulate them in the above-ground shoot biomass. These heavy metal-containing shoot tissues are then harvested and ashed to reduce their volume prior to storage in a waste repository. This plant growth and harvesting process is repeated until the level of contaminant in the soil is reduced to acceptable levels (usually a number of years).A major factor behind the recent interest in phytoremediation of metal polluted soils has been the growing awareness by the scientific community of the existence of a number of plant species that not only can tolerate high levels of toxic heavy metals in the soil, but actually can accumulate these metals to very high levels in the easily harvested above-ground shoot biomass. Over 200 terrestrial species have been reported that grow on high metal soils and can tolerate and accumulate high levels of heavy metals such as Zn, Cd, Cu, and Ni in their shoots. These plants have been coined hyperaccumulators; the very existence of these interesting metal hyperaccumulator species suggests that the genetic potential exists for phytoremediation to be successful. Most of these hyperaccumulator species, however, are small and slow growing, and because they produce limited shoot biomass their potential for large-scale decontamination of polluted soils is limited. Transferring the genes expressing the hyperaccumulating phenotype to higher shoot biomass-producing plants has been suggested as an avenue for enhancing the potential of phytoremediation as a viable commercial technology. Progress towards this goal, however, has been hindered by a lack of understanding of the basic molecular, biochemical and physiological mechanisms involved in heavy metal hyperaccumulation.One of the best known metal hyperaccumulators is Thlaspi caerulescens, a member of the cabbage family that can accumulate the heavy metals cadmium (Cd) and zinc (Zn) to extremely high levels in the shoot. Additionally, certain ecotypes of T. caerulescens have been reported to accumulate high levels of other heavy metals, including Ni and Co. The unique physiology of heavy metal transport and tolerance in Thlaspi caerulescens makes it a very interesting experimental system for basic research aimed at elucidating plant mechanisms and the associated genes controlling heavy metal hyperaccumulation.The goals of this research are to identify the basic mechanisms of heavy metal hyperaccumulation in plants, and to isolate and characterize the suite of genes that underly this hyperaccumulation trait in Thlaspi caerulescens. Dr. Kochian's group will use recent advances in plant molecular biology and genomics to identify both metal transporter genes involved in metal accumulation and tolerance, as well as genes involved in the production of low molecular weight organic compounds (e.g., peptides, organic genes, amino acids, metallothioneins, phytochelatins) that can bind and detoxify Zn and Cd in plant cells. Based on the recent sequencing and analysis of the Arabidopsis genome, it is now known that higher plants employ the same families of metal transporters recently identified and characterized in yeast, bacteria and mammals for metal accumulation and homeostasis. Dr. Kochian's group has cloned genes in T. caerulescens from these different metal transporter gene families and will characterize these transporters to determine their role in metal hyperaccumulation. This characterization will include determining in which plant tissue and cell type different genes are expressed, the membrane localization of transport proteins to help assign a potential role for each transporter, and the elucidation of the physiological function of individual metal transporters. They also are expressing T. caerulescens genes in yeast to look for genes conferring metal tolerance through the production of metal binding organic ligands.These approaches should allow the investigators to identify the suite of genes that confer heavy metal hyperaccumulation in T. caerulescens and to elucidate the molecular mechanism(s) for this trait. The ultimate goal of this research is to use these hyperaccumulation genes to develop transgenic plants that both are metal hyperaccumulators and produce high shoot biomass , and thus will be well suited for the phytoremediation of metal contaminated soils.This project was funded through the Joint Program on Phytoremediation, co-sponsored by the Environmental Protection Agency, the National Science Foundation, the Office of Naval Research, and the Strategic Environmental Research and Development Program.
[129844]有毒重金属污染土壤对人类健康和农业都是一个严重的世界性问题。据估计,仅在美国,目前使用的基于工程的技术清理危险废物至少要花费4000亿美元。最近,人们对利用陆生植物作为一种替代的“绿色技术”来修复被有毒重金属污染的表层土壤产生了相当大的兴趣。植物修复的主要原理是在受污染的地方种植植物,就像在农业土壤上种植作物一样。如果植物对土壤中的重金属有亲和力,它们可以从土壤中提取金属并将其积累在地上部生物量中。然后将这些含重金属的茎组织收获并灰化,以减少其体积,然后将其储存在废物储存库中。这种植物生长和收获过程不断重复,直到土壤中的污染物水平降低到可接受的水平(通常需要数年)。最近对金属污染土壤的植物修复感兴趣的一个主要因素是科学界越来越意识到存在一些植物物种,它们不仅可以忍受土壤中高浓度的有毒重金属,而且实际上可以在容易收获的地上茎生物量中积累这些金属。据报道,超过200种陆生植物生长在高金属土壤上,它们的茎部可以耐受和积累高水平的重金属,如Zn、Cd、Cu和Ni。这些植物被称为超积累植物;这些有趣的金属超积累物种的存在表明植物修复成功的遗传潜力是存在的。然而,这些高蓄积物种大多体积小,生长缓慢,而且由于它们产生的茎部生物量有限,它们对污染土壤进行大规模净化的潜力有限。将表达超积累表型的基因转移到高茎生生物量植物上已被认为是提高植物修复潜力的一种可行的商业技术。然而,由于缺乏对重金属超积累的基本分子、生化和生理机制的了解,这一目标的进展受到阻碍。其中最著名的金属超积累者是白菜科的一员,它可以在茎部积累重金属镉(Cd)和锌(Zn)到极高的水平。此外,据报道,某些生态类型的绿毛茛积累了大量的其他重金属,包括Ni和Co。绿毛茛独特的重金属转运和耐受生理使其成为一个非常有趣的基础研究实验系统,旨在阐明植物机制和相关基因控制重金属超积累。本研究的目的是确定植物中重金属超积累的基本机制,并分离和表征构成这种超积累性状的一组基因。Kochian博士的团队将利用植物分子生物学和基因组学的最新进展,识别与金属积累和耐受性相关的金属转运基因,以及与产生低分子量有机化合物(如肽、有机基因、氨基酸、金属硫蛋白、植物螯合蛋白)相关的基因,这些化合物可以结合并解毒植物细胞中的锌和Cd。基于最近对拟南芥基因组的测序和分析,我们现在知道高等植物利用最近在酵母、细菌和哺乳动物中发现和表征的金属转运蛋白家族来积累和平衡金属。Kochian博士的研究小组已经克隆了T. caerulescens中这些不同金属转运蛋白基因家族的基因,并将对这些转运蛋白进行表征,以确定它们在金属超积累中的作用。这种特性将包括确定在植物组织和细胞类型中表达不同基因,转运蛋白的膜定位以帮助分配每种转运蛋白的潜在作用,以及阐明单个金属转运蛋白的生理功能。他们也在酵母中表达T. caulescens基因,以通过产生金属结合有机配体来寻找赋予金属耐受性的基因。这些方法将使研究人员能够识别出一组基因,这些基因赋予了T. caerulescens中重金属的过度积累,并阐明了这一特性的分子机制。本研究的最终目标是利用这些超积累基因培育出既具有金属超积累能力又能产生高茎部生物量的转基因植物,从而很好地适应金属污染土壤的植物修复。该项目由美国环境保护局、国家科学基金会、海军研究办公室和战略环境研究与发展计划共同发起的植物修复联合计划资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leon Kochian其他文献

A Multidrug and Toxin Efflux (MATE) Transporter Involved in Aluminum Resistance is Modulated by a CBL5/CIPK2 Calcium Sensor/Protein Kinase Complex
  • DOI:
    10.1016/j.bpj.2018.11.942
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Julia Miller;Alison Coluccio;Jan Niklas Offenborn;Anette Mähs;Jörg Kudla;Leon Kochian;Miguel Piñeros
  • 通讯作者:
    Miguel Piñeros
水耕栽培におけるオゾンマイクロバブル処理が葉菜類の生育に及ぼす影響
臭氧微泡处理对水培叶类蔬菜生长的影响
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    有賀裕剛;香取拓;Leon Kochian;Owen Hoekenga;Michael A. Gore;小林佑理子;井内聖;小林正智;坂田洋一;林隆久;太治輝昭;延命直紀・玉置雅彦
  • 通讯作者:
    延命直紀・玉置雅彦
Photochemical properties in flag leaves of rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient
叶绿素荧光瞬态探测水稻剑叶的光化学特性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    YongJie Shan;Leon Kochian;Reto J. Strasser;陈国祥
  • 通讯作者:
    陈国祥
Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl)
  • DOI:
    10.1007/s004250100650
  • 发表时间:
    2002-02-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Stephen Ebbs;Ingar Lau;Beth Ahner;Leon Kochian
  • 通讯作者:
    Leon Kochian
耐塩性シロイヌナズナが有する塩馴化能の遺伝学的解析
耐盐拟南芥耐盐驯化能力的遗传分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    有賀裕剛;香取拓;Leon Kochian;Owen Hoekenga;Michael A. Gore;小林佑理子;井内聖;小林正智;坂田洋一;林隆久;太治輝昭
  • 通讯作者:
    太治輝昭

Leon Kochian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leon Kochian', 18)}}的其他基金

Functional and Comparative Genomic Analysis of Aluminum Tolerance in Maize
玉米铝耐受性的功能和比较基因组分析
  • 批准号:
    0419435
  • 财政年份:
    2004
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
  • 批准号:
    41105102
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
求解Basis Pursuit问题的数值优化方法
  • 批准号:
    11001128
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Clarification of molecular basis for high mutation frequency induced by heavy ion beams
澄清重离子束诱导高突变频率的分子基础
  • 批准号:
    19K06622
  • 财政年份:
    2019
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Basis of Immunoglobulin Heavy Chain Switch
免疫球蛋白重链开关的分子基础
  • 批准号:
    8090512
  • 财政年份:
    2010
  • 资助金额:
    $ 41.69万
  • 项目类别:
Molecular Basis of Immunoglobulin Heavy Chain Switch
免疫球蛋白重链开关的分子基础
  • 批准号:
    7846563
  • 财政年份:
    2009
  • 资助金额:
    $ 41.69万
  • 项目类别:
Molecular basis for intracellular zinc-responsive system and its application as the imaging sensor for heavy metals.
细胞内锌响应系统的分子基础及其作为重金属成像传感器的应用。
  • 批准号:
    21590136
  • 财政年份:
    2009
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Basis of Immunoglobulin Heavy Chain Switch
免疫球蛋白重链开关的分子基础
  • 批准号:
    6929610
  • 财政年份:
    1985
  • 资助金额:
    $ 41.69万
  • 项目类别:
MOLECULAR BASIS OF IMMUNOGLOBULIN HEAVY CHAIN SWITCH
免疫球蛋白重链开关的分子基础
  • 批准号:
    3135190
  • 财政年份:
    1985
  • 资助金额:
    $ 41.69万
  • 项目类别:
MOLECULAR BASIS OF IMMUNOGLOBULIN HEAVY CHAIN SWITCH
免疫球蛋白重链开关的分子基础
  • 批准号:
    2413524
  • 财政年份:
    1985
  • 资助金额:
    $ 41.69万
  • 项目类别:
MOLECULAR BASIS OF IMMUNOGLOBULIN HEAVY CHAIN SWITCH
免疫球蛋白重链开关的分子基础
  • 批准号:
    3135185
  • 财政年份:
    1985
  • 资助金额:
    $ 41.69万
  • 项目类别:
MOLECULAR BASIS OF IMMUNOGLOBULIN HEAVY CHAIN SWITCH
免疫球蛋白重链开关的分子基础
  • 批准号:
    3135187
  • 财政年份:
    1985
  • 资助金额:
    $ 41.69万
  • 项目类别:
MOLECULAR BASIS OF IMMUNOGLOBULIN HEAVY CHAIN SWITCH
免疫球蛋白重链开关的分子基础
  • 批准号:
    3135188
  • 财政年份:
    1985
  • 资助金额:
    $ 41.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了