Capturing Data in the Field: An Application Framework for Easily Creating Custom Data and Metadata Entry Forms on Handheld and Desktop Computers

现场捕获数据:用于在手持式和台式计算机上轻松创建自定义数据和元数据输入表单的应用程序框架

基本信息

  • 批准号:
    0131178
  • 负责人:
  • 金额:
    $ 88.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-02-15 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

Ecologists investigate a number of critical and diverse environmental issues, ranging from global climate change to the loss of biodiversity. The data needed to support this range of research are highly complex and variable, and the data are often labor-intensive to collect. These characteristics present distinct challenges for the collection and management of ecological data that are not being met by the range of available software tools. Prospects for the preservation and re-use of ecological data are further compromised by their tendency to be poorly described and inadequately archived. As a result, potentially relevant data that have been collected in the past are often difficult to find or difficult to interpret because of ambiguities in how they were collected. The bottleneck is a lack of standard methods or formats for data documentation or easy-to-use frameworks that assist in these functions.These data management and access problems will be solved by reducing inefficiencies and errors during the process of capturing environmental data in the field. This will be achieved through the design and building of a set of flexible, easy-to-use software tools for handheld field devices, as well as desktop computers-that will streamline field data collection, data entry and data documentation. These software tools will assist in the creation of data entry forms that are well-structured, unambiguous, and visually pleasing-thus eliminating the need for customized database development for each new project, or the often haphazard and error-prone entry of data into "free-form" spreadsheets. Finally, researchers and students will be trained in the use of these new tools.There is a growing need for synthetic ecological studies that will provide for a more powerful understanding of living systems, over larger spatial scales and longer time periods. Such syntheses require integrating environmental data collected from a number of sources. To achieve this goal, it is imperative to pay more attention to how the raw data are collected and preserved. The research should have major impacts on the scientific community by doing this-facilitating the capture, documentation and accessibility of ecological and environmental data. This software is not only intended to simplify the process of collecting data, but also to promote sound data practice by enforcing logically consistent data structures.
生态学家调查了许多关键和不同的环境问题,从全球气候变化到生物多样性的丧失。 支持这一系列研究所需的数据非常复杂和多变,收集这些数据往往需要大量的劳动力,这些特点为生态数据的收集和管理提出了独特的挑战,现有的软件工具无法满足这些挑战。 生态数据往往描述不清,存档不充分,这进一步损害了保存和再利用生态数据的前景。因此,过去收集的可能相关的数据往往很难找到或难以解释,因为这些数据的收集方式含糊不清。瓶颈是缺乏标准方法或格式来记录数据,或缺乏便于使用的框架来协助履行这些职能,这些数据管理和访问问题将通过减少实地收集环境数据过程中的效率低下和错误来解决。这将通过为手持现场设备和台式计算机设计和建立一套灵活、易于使用的软件工具来实现,这将简化现场数据收集、数据输入和数据记录。 这些软件工具将有助于创建结构良好、明确、视觉上令人愉悦的数据输入表单,从而消除了为每个新项目定制数据库开发的需要,也消除了将数据随意和容易出错地输入到“自由格式”电子表格中的需要。 最后,研究人员和学生将接受使用这些新工具的培训,越来越需要综合生态学研究,以便在更大的空间尺度和更长的时间内更有力地了解生命系统。这种综合需要综合从若干来源收集的环境数据。为了实现这一目标,必须更加关注如何收集和保存原始数据。 这项研究应该通过这样做对科学界产生重大影响-促进生态和环境数据的捕获,记录和访问。 该软件不仅旨在简化收集数据的过程,而且还通过强制执行逻辑一致的数据结构来促进健全的数据做法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Gaines其他文献

Steven Gaines的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Gaines', 18)}}的其他基金

Doctoral Dissertation Research: Assessing the Effects of Tourism Development on Small-Scale Fisheries
博士论文研究:评估旅游业发展对小型渔业的影响
  • 批准号:
    1735886
  • 财政年份:
    2017
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
U.S.-Mexico Dissertation Enhancement: Marine Population Connectivity Across the U.S./Mexican Border: A Genetic Approach to Dispersal Dynamics in Kelp Bass
美国-墨西哥论文增强:美国/墨西哥边境的海洋种群连通性:海带鲈鱼扩散动力学的遗传方法
  • 批准号:
    0402589
  • 财政年份:
    2004
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
SGER: The Causes of Range Expansions during El Nino
SGER:厄尔尼诺期间范围扩大的原因
  • 批准号:
    9813983
  • 财政年份:
    1998
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Is Variable Retention of Larvae Nearshore a General Cause of Variable Recruitment
合作研究:近岸幼虫的可变滞留是可变招募的一般原因
  • 批准号:
    9402690
  • 财政年份:
    1994
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Continuing Grant
Causes and Consequences of Variable Recruitment in the AcornBarnacle, Semibalanus Balanoides
橡子藤壶 (Semibalanus Balanoides) 募集变量的原因和后果
  • 批准号:
    8916841
  • 财政年份:
    1990
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
RAPID: Revisiting the compounding storm surge and extreme precipitation events on coastal flooding during hurricane Florence using field data
RAPID:利用现场数据重新审视佛罗伦萨飓风期间沿海洪水的复合风暴潮和极端降水事件
  • 批准号:
    2423008
  • 财政年份:
    2024
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
Measurement and analysis of radiotherapy small field dosimetry data to support the development of a simulation training product for clinical Radiotherapy Physicists.
放射治疗小场剂量测定数据的测量和分析,以支持临床放射治疗物理学家模拟培训产品的开发。
  • 批准号:
    10089179
  • 财政年份:
    2024
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325310
  • 财政年份:
    2024
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the Global Electric Circuit by Data Mining of Electric Field and Radar Observations from Ground Based, Airborne and Satellite Platforms
合作研究:通过地面、机载和卫星平台的电场和雷达观测数据挖掘来量化全球电​​路
  • 批准号:
    2328464
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
Study on an estimation for instantaneous flow field in real river by data assimilation
数据同化估算真实河流瞬时流场的研究
  • 批准号:
    23K13410
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Rapid-scan Polarimetric Radar Data Collection and Analysis of the Wind Field in Severe Convective Storms and Tornadoes
强对流风暴和龙卷风风场的快速扫描偏振雷达数据采集和分析
  • 批准号:
    2214926
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Standard Grant
Combining long-term field data and remote sensing to test how tree diversity influences aboveground biomass recovery in logged tropical forests
结合长期实地数据和遥感来测试树木多样性如何影响被砍伐的热带森林的地上生物量恢复
  • 批准号:
    NE/X000281/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.76万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了