CAREER: Molecular Scale Electronic Devices and Systems
职业:分子级电子设备和系统
基本信息
- 批准号:0132982
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-02-01 至 2007-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The relentless down-scaling of the conventional metal-oxide-semiconductor (MOS) based integrated circuits is expected to slow down due to fundamental physical limitations and increasingly prohibitive cost associated with fabrication facilities. Molecular electronics, where the idea is that only a few or even just one molecule could be used to perform basic electronic functions, holds great promises for superior performance and substantially reduced cost. As a bottom-up approach to fabricate nanostructures, molecular electronics employs chemical synthesis and assembly to produce devices with critical dimensions defined by the molecular wires and hence can eliminate the cost associated with advanced lithography techniques. Such devices utilize various quantum effects such as tunneling and conformational transitions to their advantages and thus can deliver better performances than conventional MOS devices.The eventual success of this program will firmly establish molecular electronics as an intriguing and practical technology with great potential to replace silicon-based electronics. We expect to produce the molecular electronics version of two core elements in integrated circuits: transistors and memories. Our molecular transistors will possess a channel length around two nanometers, two orders of magnitude smaller than that of today's most advanced silicon-based transistors. We also expect to demonstrate nonvolatile spin-dependent memories with molecular wires as the active component. This technique will likely produce ultra-small memory devices and add a new direction to the by far "classical" molecular electronics. Finally we expect to demonstrate a new scheme for integrated molecular systems with carbon nanotubes as interconnects. This program will also serve to advance the fundamental forefronts of molecular electronics.Several unique features distinguish this program from other existing programs in this field.1. We will utilize the nanopore technique to produce molecular transistors and spin-electronic devices. Our group is one of two existing groups that have mastered this technique (the other being the Mark A. reed group at Yale, who is currently focusing on two-terminal nanopore devices). This technique can render devices with channel length defined by the molecular wire length (~ 2 nm) and device areas ~ 10 nm in diameter. Such nanoscale devices hold great promises for high-density integrations.2. We will investigate both n-type and p-type molecular wires in our transistor structures, making complementary circuitry possible. This important issue has by far being unexplored by other research groups due to the apparent difficulty.3. An intimate integration of the proposed research and education is guaranteed. Substantial effort will be devoted to educate both graduate and undergraduate students, especially the underrepresented, throughout this program. The research activities will also be integrated into the Nanoelectronics and Nanotechnology class I developed.4. We enjoy full support from our collaborators at the Nanotechnology Center of NASA Ames Research Center. Dr. Wendy Fan and her colleagues are currently devoting 100% of her time to the organic synthesis component of this program, at no cost to NSF. Dr. Jie Han is focusing on the theoretical modeling and simulations of the proposed molecular devices, again, at no cost to NSF.In conclusion, the proposed program holds great promises for future nanoscale electronics and has a great chance to succeed. The financial support from NSF can be invaluable in helping me to achieve my goal to develop a life-long career in scientific research, academic advising and teaching.
由于基本的物理限制和与制造设施相关的成本日益高昂,基于传统金属氧化物半导体(MOS)的集成电路的不断缩小规模预计会放缓。 分子电子学的理念是仅使用几个甚至一个分子即可执行基本的电子功能,因此有望实现卓越的性能和大幅降低的成本。 作为一种自下而上的纳米结构制造方法,分子电子学采用化学合成和组装来生产具有由分子线定义的关键尺寸的器件,因此可以消除与先进光刻技术相关的成本。 此类器件利用了隧道效应和构象跃迁等各种量子效应的优势,因此可以提供比传统MOS器件更好的性能。该项目的最终成功将牢固地确立分子电子学作为一项有趣且实用的技术,具有取代硅基电子学的巨大潜力。 我们期望生产集成电路中两个核心元件的分子电子版本:晶体管和存储器。 我们的分子晶体管的沟道长度约为两纳米,比当今最先进的硅基晶体管小两个数量级。 我们还期望展示以分子线作为活性成分的非易失性自旋相关存储器。 这项技术可能会生产超小型存储设备,并为迄今为止的“经典”分子电子学增添新的方向。 最后,我们期望展示一种以碳纳米管作为互连的集成分子系统的新方案。 该计划还将有助于推进分子电子学的基本前沿。该计划有几个独特的功能区别于该领域的其他现有计划。1。我们将利用纳米孔技术来生产分子晶体管和自旋电子器件。 我们的团队是现有的两个掌握这项技术的团队之一(另一个是耶鲁大学的 Mark A. reed 团队,目前专注于两端纳米孔器件)。 该技术可以使器件的通道长度由分子线长度(约 2 nm)定义,器件区域直径约 10 nm。 这种纳米级器件在高密度集成方面具有广阔的前景。2.我们将研究晶体管结构中的 n 型和 p 型分子线,使互补电路成为可能。 由于明显的困难,这一重要问题迄今为止尚未被其他研究小组探索。3.保证了拟议的研究和教育的紧密结合。 在整个计划中,我们将投入大量精力来教育研究生和本科生,特别是代表性不足的学生。 该研究活动也将被纳入纳米电子学和纳米技术I类开发中。4.我们得到了美国宇航局艾姆斯研究中心纳米技术中心合作者的全力支持。 Wendy Fan 博士和她的同事目前将 100% 的时间投入到该项目的有机合成部分,且 NSF 不承担任何费用。 韩杰博士正专注于所提出的分子器件的理论建模和模拟,这也是 NSF 不承担任何费用的。 总之,所提出的项目对未来纳米级电子学有着巨大的希望,并且有很大的成功机会。 美国国家科学基金会 (NSF) 的财政支持对于帮助我实现在科学研究、学术咨询和教学领域发展终身职业的目标非常宝贵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongwu Zhou其他文献
Molecular Scale Electronics. Critical Nanolithography Issues of Synthesis and Addressing
分子尺度电子学。
- DOI:
10.1557/proc-584-45 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
S. Huang;E. Mickelson;A. Rawlett;C. Asplund;A. Cassell;M. Kozaki;T. Burgin;L. Jones;J. Tour;M. Myrick;P. G. V. Patten;Jia Chen;Chongwu Zhou;C. Muller;M. Deshpande;M. Reed;L. A. Bumm;M. Cygan;T. Dunbar;P. Weiss;D. Allara - 通讯作者:
D. Allara
Reduced interface effect of proton beam irradiation on the electrical properties of WSe2/hBN field effect transistors
质子束辐照减少界面效应对WSe2/hBN场效应晶体管电性能的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.5
- 作者:
Seongmin Ko;Jiwon Shin;Juntae Jang;Jaeyong Woo;Jaeyoung Kim;Jaehyoung Park;Jongeun Yoo;Chongwu Zhou;Kyungjune Cho;Takhee Lee - 通讯作者:
Takhee Lee
Synthesis and photonic applications of gallium nitride nanowires
氮化镓纳米线的合成及其光子应用
- DOI:
10.1109/nano.2003.1231046 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Song Han;W. Jin;T. Tang;Chongwu Zhou - 通讯作者:
Chongwu Zhou
Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies
- DOI:
10.1007/s12274-018-2193-7 - 发表时间:
2018-09-22 - 期刊:
- 影响因子:9.000
- 作者:
Zhen Li;Yihang Liu;Anyi Zhang;Qingzhou Liu;Chenfei Shen;Fanqi Wu;Chi Xu;Mingrui Chen;Hongyu Fu;Chongwu Zhou - 通讯作者:
Chongwu Zhou
Differentiation of oxidized low density lipoproteins by nanosensors
纳米传感器分化氧化低密度脂蛋白
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
M. Rouhanizadeh;T. Tang;C. Li;Juliana Hwang;Chongwu Zhou;T. Hsiai - 通讯作者:
T. Hsiai
Chongwu Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongwu Zhou', 18)}}的其他基金
Collaborative Research: Design, Modeling, Automation and Experimentation of
协作研究:设计、建模、自动化和实验
- 批准号:
0702204 - 财政年份:2007
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NER: Carbon Nanotube Devices and Integrated Systems
NER:碳纳米管器件和集成系统
- 批准号:
0102955 - 财政年份:2001
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Unified sample preparation and micro-scale centrifugal heating for the next generation of portable and inexpensive molecular diagnostic platform
职业:统一样品制备和微尺度离心加热,用于下一代便携式且廉价的分子诊断平台
- 批准号:
2239135 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Using a Century Scale Experiment to Decode the Molecular Basis of Crop Competitiveness
职业:利用一个世纪规模的实验来解码作物竞争力的分子基础
- 批准号:
2046256 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: The Morpho-Molecular Tissue Atlas: A Framework for the Generation and Comparative Profiling of Terabyte-Scale Tissue Phenotypes
职业:形态分子组织图谱:TB 级组织表型的生成和比较分析框架
- 批准号:
1943455 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Molecular-Scale Behavior of Actinide Elements at the Mineral-Water Interface
职业:锕系元素在矿泉水界面的分子尺度行为
- 批准号:
1847939 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Investigating reconfigurable DNA self-assembly at the molecular scale
职业:在分子尺度上研究可重构 DNA 自组装
- 批准号:
1653501 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Molecular Scale Characterization of Water Adsorption on Surfaces Relevant to Cirrus Cloud Formation
职业:与卷云形成相关的表面水吸附的分子尺度表征
- 批准号:
1351383 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Climate Change Impacts on the Interrelationship between Iron Cycling and Organic Carbon: Environmental Biogeochemical Research and Education from Molecular to Field Scale
职业:气候变化对铁循环和有机碳之间相互关系的影响:从分子到现场尺度的环境生物地球化学研究和教育
- 批准号:
0847683 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Design of Large-Scale Molecular Simulations for Electrocatalysis
职业:电催化大规模分子模拟设计
- 批准号:
0547610 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Conduction at the Molecular Scale and Nanoscience Education
职业:分子尺度传导和纳米科学教育
- 批准号:
0347253 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Molecular-Scale Interactions Between Microbes and Surfaces in the Environment
职业:环境中微生物与表面之间的分子尺度相互作用
- 批准号:
0238627 - 财政年份:2003
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant














{{item.name}}会员




