Career: Research and Education of Flexible Methods for Statistical Modeling and Prediction
职业:统计建模和预测灵活方法的研究和教育
基本信息
- 批准号:0134987
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-03-01 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, many novel techniques for regression, classification, and density estimation have been developed, both in statistics and in other related areas such as machine learning and neural networks. Some of these methods have been very successful in practice, but their statistical properties are not fully understood. This hinders the further development of these techniques. The goal of the proposed research is to gain statistical insights into these techniques, and to develop new methodologies and improved algorithms. The specific techniques investigated are the support vector machine, the randomized trees, and the log density functional ANOVA model for continuous and mixed data. Several new techniques are introduced. The support vector machine for multi-category classification with arbitrary cost structures will be further developed. A new framework is proposed that connects the adaptive nearest neighbor estimation and the randomized trees. Through the use of the sparse grid method, a backfitting type algorithm is proposed for fitting the log density functional ANOVA model, with applications to graphical models for continuous and mixed data. These new techniques will be examined through theoretical investigation and empirical evaluation. The investigator will develop a graduate level course on flexible methods for regression, classification, and density estimation, and their applications. Part of the proposed research will be incorporated into the course material.Regression, classification, and density estimation are the standard problems in statistics. Traditional methods typically employ strong distributional assumptions. With the vast computing power of today, it becomes possible to develop and implement more flexible methods, and a host of new techniques emerged, both in statistics and other related areas. Many of these are computationally intensive, and their statistical properties have not been wellunderstood. A clear understanding of these methods is crucial for their further development and statistical education. The proposed research develops valuable insights into flexible statistical methods of current research interest. The techniques developed in the research provides new and useful tools to efficient data analysis, and can be applied to many problems in medical, social, economical, environmental and biological sciences. An important aspect of the current statistical education is the teaching of flexible statistical methods that take advantage of the computing power we have today, and their application in different scientific and industrial areas. The insights and new techniques developed in the proposed research will be incorporated into graduate level courses, and benefit the training of graduate students.
近年来,在统计学和其他相关领域,如机器学习和神经网络,已经发展了许多用于回归、分类和密度估计的新技术。其中一些方法在实践中取得了很大的成功,但对它们的统计性质还没有完全了解。这阻碍了这些技术的进一步发展。拟议研究的目标是获得对这些技术的统计见解,并开发新的方法和改进的算法。研究的具体技术包括支持向量机、随机树和连续和混合数据的对数密度泛函ANOVA模型。介绍了几种新技术。具有任意代价结构的多类别分类支持向量机将得到进一步发展。提出了一种连接自适应最近邻估计和随机树的新框架。通过使用稀疏网格方法,提出了对数密度泛函ANOVA模型的反拟合法,并将其应用于连续数据和混合数据的图形模型。这些新技术将通过理论研究和实证评估进行检验。研究人员将开发一门研究生水平的课程,介绍回归、分类和密度估计的灵活方法及其应用。部分建议的研究将被纳入课程材料。回归、分类和密度估计是统计学中的标准问题。传统方法通常采用强有力的分布假设。随着当今巨大的计算能力,开发和实施更灵活的方法成为可能,在统计和其他相关领域出现了许多新技术。其中许多都是计算密集型的,而且它们的统计特性还没有被很好地理解。对这些方法有一个清楚的了解,对于它们的进一步发展和统计教育至关重要。拟议的研究发展了对当前研究兴趣的灵活统计方法的有价值的见解。研究中开发的技术为有效的数据分析提供了新的有用的工具,并可应用于医学、社会、经济、环境和生物科学的许多问题。当前统计教育的一个重要方面是教授灵活的统计方法,利用我们今天的计算能力,并将其应用于不同的科学和工业领域。在拟议的研究中开发的见解和新技术将被纳入研究生水平的课程,并有利于研究生的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Lin其他文献
1029 November 6 , 2000 On the Support Vector Machine
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Yi Lin - 通讯作者:
Yi Lin
Random Rates in Anisotropic Regression : Discussion
各向异性回归中的随机率:讨论
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
L. Brown;Yi Lin;Yi Lin - 通讯作者:
Yi Lin
Barycenter reflected equatorial Pacific sea level structure evolution and its indication of ENSO events
重心反映赤道太平洋海平面结构演化及其对ENSO事件的指示
- DOI:
10.1016/j.oceano.2015.01.004 - 发表时间:
2015-04 - 期刊:
- 影响因子:2.9
- 作者:
Luo Wen;Yi Lin;Yu Zhaoyuan;Sun Hui;Yuan Linwang - 通讯作者:
Yuan Linwang
A novel inequality-constrained weighted linear mixture model for endmember variability
一种新颖的端元变异性不等式约束加权线性混合模型
- DOI:
10.1016/j.rse.2021.112359 - 发表时间:
2021-05 - 期刊:
- 影响因子:13.5
- 作者:
Jie Yu;Bin Wang;Yi Lin;Fengting Li;Jianqing Cai - 通讯作者:
Jianqing Cai
Design of an SSVEP-based BCI Stimuli System for Attention-based Robot Navigation in Robotic Telepresence*
基于 SSVEP 的 BCI 刺激系统设计,用于机器人远程呈现中基于注意力的机器人导航*
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xingchao Wang;Xiaopeng Huang;Yi Lin;Liguang Zhou;Zhenglong Sun;Yangsheng Xu - 通讯作者:
Yangsheng Xu
Yi Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
- 批准号:
2338178 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: Early Career Development (CAREER) Program Workshop for STEM Education Research at Minority-Serving Institutions
会议:少数族裔服务机构 STEM 教育研究早期职业发展 (CAREER) 计划研讨会
- 批准号:
2400690 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
- 批准号:
2338959 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: A Summer Experience for Undergraduates Integrating Research, Education, and Career Development in an Interdisciplinary Environment
REU 网站:本科生在跨学科环境中整合研究、教育和职业发展的暑期体验
- 批准号:
2349329 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
"CAREER:" Shark Survivor! Interdisciplinary approaches to modern and paleo- ecology in research and education
“职业:”鲨鱼幸存者!
- 批准号:
2239981 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
- 批准号:
2305282 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: An Integrated Geophysical Approach to Research and Education to Solve the Tectonic Puzzle of the Northern Atlantic
职业:解决北大西洋构造难题的综合地球物理研究和教育方法
- 批准号:
2238340 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Peptidic Natural Products in Research and Education
职业:肽类天然产物的研究和教育
- 批准号:
2238650 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
- 批准号:
2333073 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
- 批准号:
2333074 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant