CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
基本信息
- 批准号:2305282
- 负责人:
- 金额:$ 52.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With recent developments in polymer science and conducting polymers, advances are being made in stretchable electronic polymer systems for applications in healthcare, robotics, and entertainment. These systems are attached to clothes or worn directly on the skin for monitoring physical signals, biochemical signals, and motion. Due to the soft, compliant, and complex nature of skin and the natural bending and rotational motion associated with joints, the stretchable electronic polymers should be soft and mechanically robust enough for the wearer to comfortably perform motions such as bending, stretching, and twisting. To prevent long-term performance decline it is desirable for the films to continually heal themselves. Conventional semiconductors, like silicon, are brittle and rigid. Since they are not self-healing, they are unsuitable for many stretchable electronic polymer applications. This work investigates the synthesis, internal structure, self-healing ability, and electrical properties of these dynamic ultra-stretchable systems and utilizes them for wearable electronics, such as sensors. This project's education and outreach activities are combined with the research in a manner that impacts the science, technology, engineering, and mathematics (STEM) workforce. This effort has three main foci: the participation of underrepresented and multi-cultural student groups, improving engineering education at both the undergraduate and graduate level, and outreach to educators & future STEM students. The educational goal of this proposal highlights the role stretchable electronic polymers play in everyday life through the creation of educational YouTube videos reaching thousands of potential STEM students and teachers.Currently, there is no electronic material that possesses the properties of skin—compliant, elastic, stretchable, and self-healable. This work investigates stretchable electronic polymer systems and the underlying phenomena of these advanced materials—for future applications in healthcare and engineering fields. The fundamental goal of this work is to understand the relationship between synthesis, internal structure, self-healing ability, and electrical properties of dynamic polyaniline/acidic polyacrylamide/small molecule dopant stretchable electronic polymer systems—to fully understand these stretchable electronic polymer materials and apply them specifically to wearable sensor/electronic functionalities. The technical merit of the work provides new insight into the role of both small molecule dopants and polyacrylamides acidic group content and the overall structure of stretchable, self-healable, conductive polyaniline systems. This project elucidates current stretchable electronic polymer systems by unraveling the electrical/self-healing activity in relation to the internal film structure. This knowledge is cross-disciplinary and aids developments in the fields of sensor/surface science, basic materials science and engineering, etc. The research team investigates the effects of small molecule dopants and acidic polyacrylamides on the synthesis/structure/electrical/self-healing properties and working relationships of dynamic polyaniline systems and links this activity to the internal film structure. Investigating the effects of molecular weight, structure, as well as the number and class of the acidic groups of the small molecule dopants allows the investigator to understand how the intermolecular, thermal, morphological, self-healing, and electrical properties depend on the electrostatic interactions and hydrogen bonding within the material. The acidic groups of the polyacrylamides increase the electrostatic interactions within the material and aid the doping of polyaniline, the electrical properties, and the self-healing ability. Varying the amount and type of acidic polyacrylamides enables the researchers to (i) explore their function in the electrostatic interactions of the dynamic systems and (ii) understand how the intermolecular, thermal, morphological, and electrical properties depend on the internal film structure. This understanding allows for a thorough investigation of the basic properties (gauge factor, linearity of response, self-healing) of this class of polymer systems for realizable wearable stretchable electronic polymers for medical diagnosis, prosthetics, e-skins, etc. The research contributes to the current theory relating these functional materials to the fundamental understanding of the electrostatic interactions and internal film properties controlling these autonomous self-healable and ultra-stretchable polymers. The education and outreach components of this work integrate with the research through creative and artistic online media and outreach, and illustrates the importance of stretchable electronic polymers in everyday life to educators & future STEM students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着聚合物科学和导电聚合物的最新发展,可拉伸电子聚合物系统在医疗保健,机器人和娱乐领域的应用正在取得进展。这些系统附着在衣服上或直接佩戴在皮肤上,用于监测物理信号、生化信号和运动。由于皮肤的柔软、柔顺和复杂的性质以及与关节相关联的自然弯曲和旋转运动,可拉伸电子聚合物应当足够柔软并且机械坚固,以使穿戴者舒适地执行诸如弯曲、拉伸和扭转的运动。为了防止长期性能下降,期望膜不断地自我修复。传统的半导体,如硅,既脆又硬。由于它们不是自修复的,因此它们不适合于许多可拉伸电子聚合物应用。这项工作研究了这些动态超可拉伸系统的合成,内部结构,自我修复能力和电气性能,并将其用于可穿戴电子产品,如传感器。该项目的教育和推广活动与研究相结合,影响科学,技术,工程和数学(STEM)劳动力。这项工作有三个主要重点:代表性不足和多元文化的学生团体的参与,改善本科和研究生阶段的工程教育,以及与未来STEM学生的教育工作者的联系。&该提案的教育目标是通过创建教育YouTube视频,让数千名潜在的STEM学生和教师了解可拉伸电子聚合物在日常生活中的作用。目前,还没有电子材料具有皮肤顺应性,弹性,可拉伸和自我修复的特性。这项工作研究了可拉伸电子聚合物系统和这些先进材料的潜在现象,为未来在医疗保健和工程领域的应用。本工作的基本目标是了解动态聚苯胺/酸性聚丙烯酰胺/小分子掺杂剂可拉伸电子聚合物系统的合成、内部结构、自修复能力和电性能之间的关系,以充分了解这些可拉伸电子聚合物材料并将其具体应用于可穿戴传感器/电子功能。这项工作的技术优点为小分子掺杂剂和聚丙烯酰胺酸性基团含量的作用以及可拉伸、可自我修复的导电聚苯胺系统的整体结构提供了新的见解。该项目通过解开与内部膜结构相关的电/自修复活动来阐明当前可拉伸电子聚合物系统。这些知识是跨学科的,有助于传感器/表面科学,基础材料科学和工程等领域的发展。研究小组研究了小分子掺杂剂和酸性聚丙烯酰胺对动态聚苯胺系统的合成/结构/电学/自修复特性和工作关系的影响,并将这种活动与内部膜结构联系起来。研究分子量、结构以及小分子掺杂剂的酸性基团的数量和类别的影响,使研究人员能够了解分子间、热、形态、自修复和电学性质如何取决于材料内的静电相互作用和氢键。聚丙烯酰胺的酸性基团增加了材料内的静电相互作用,并有助于聚苯胺的掺杂、电性能和自修复能力。改变酸性聚丙烯酰胺的数量和类型使研究人员能够(i)探索它们在动态系统的静电相互作用中的功能,以及(ii)了解分子间,热,形态和电学性质如何取决于内部膜结构。这种理解允许对基本性质进行彻底的调查这类聚合物系统的特性(计量因子、响应线性、自修复),用于医疗诊断、修复术、电子皮肤,这项研究有助于目前的理论与这些功能材料的静电相互作用和内部薄膜性质的基本理解控制这些自动自我修复和超拉伸聚合物。这项工作的教育和推广部分通过创造性和艺术性的在线媒体和推广与研究相结合,并说明了可拉伸电子聚合物在日常生活中对教育工作者未来STEM学生的重要性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。&
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan Wujcik其他文献
Evan Wujcik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan Wujcik', 18)}}的其他基金
CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
- 批准号:
1942492 - 财政年份:2020
- 资助金额:
$ 52.34万 - 项目类别:
Continuing Grant
相似海外基金
Cambridge Autonomous Rapid Transport
剑桥自主快速交通
- 批准号:
10042007 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
BEIS-Funded Programmes
Autonomous Robust & Rapid Processes for the Machining of Aerospace Specific Parts & Components
自主稳健
- 批准号:
10052735 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
BEIS-Funded Programmes
EFRI BRAID: Rapid contextual learning in resilient autonomous systems
EFRI BRAID:弹性自治系统中的快速情境学习
- 批准号:
2223811 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Standard Grant
Rapid Adaptive Data System for Autonomous Robots
自主机器人快速自适应数据系统
- 批准号:
22H03596 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rapid Local Trajectory Planning for Fast-moving Autonomous Ground Vehicles in Unknown Environments
未知环境中快速移动自主地面车辆的快速局部轨迹规划
- 批准号:
2902603 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Studentship
Autonomous Drone Delivery of Medical Supplies to Care Homes for Covid-19 Rapid Response
自主无人机向疗养院运送医疗用品,以应对 Covid-19 快速反应
- 批准号:
83866 - 财政年份:2020
- 资助金额:
$ 52.34万 - 项目类别:
Collaborative R&D
CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
- 批准号:
1942492 - 财政年份:2020
- 资助金额:
$ 52.34万 - 项目类别:
Continuing Grant
RAPID: Observing Heat and Carbon Fluxes with an Autonomous Wind-powered Surface Vehicle in the Gulf Stream
RAPID:使用自主风力地面车辆在墨西哥湾流中观测热和碳通量
- 批准号:
1850608 - 财政年份:2018
- 资助金额:
$ 52.34万 - 项目类别:
Standard Grant
RAPID: Low-cost Smart RF Sensor for Autonomous Floodwater Level Monitoring
RAPID:用于自主洪水水位监测的低成本智能射频传感器
- 批准号:
1760497 - 财政年份:2017
- 资助金额:
$ 52.34万 - 项目类别:
Standard Grant
Rapid, Autonomous Particle Flux Observations in the Oligotrophic Ocean
寡营养海洋中快速、自主的粒子通量观测
- 批准号:
1406552 - 财政年份:2014
- 资助金额:
$ 52.34万 - 项目类别:
Standard Grant