Density Functional Theory of Electronic Structure

电子结构密度泛函理论

基本信息

  • 批准号:
    0135678
  • 负责人:
  • 金额:
    $ 31.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-02-01 至 2006-01-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research and education motivated in part by the desire to improve the accuracy of density functional theory as practiced in condensed matter physics and quantum chemistry. The PI describes a "ladder" of approximations for the exchange-correlation functional in which the first rung is the local spin density approximation and the second rung is the generalized gradient approximation (GGA). These standard approximations do not enable electronic structure calculations with chemical accuracy. In particular, they do not accurately describe strongly correlated or strongly spatially inhomogeneous densities, polarizabilities of long-chain molecules, or highly excited states. The PI proposes to address these problems through work on several projects: (1) Develop and test approximations for the exchange-correlation functional that correspond to the third and fourth rungs of the "ladder" of approximations. The meta-GGA would be developed as a controlled interpolation between the slowly varying and iso-orbital density limits. The hyper-GGA uses the exact exchange energy density to achieve freedom from self-interaction error and a correct non-uniform scaling behavior. (2) The uniform electron gas will be explored using a modified pair density functional method with a self-consistent electron-electron interaction. An energy interpolation between exact high- and low-density limits will be used to explore the spin-polarized electron gas. The results will be compared with much more computationally expensive diffusion Monte Carlo calculations. (3) Diffusion Monte Carlo, density-functional theory, and RPA studies of the jellium surface energy will be carried out in parallel to resolve the apparent discrepancy between surface energies calculated using diffusion Monte Carlo and other methods. (4) Calculations for real solids will test a new analytic equation of state and will construct a Kohn-Sham potential for the orbital-dependent meta-GGA and hyper-GGA energy functionals. (5) A Laplacian-level meta-GGA will be constructed non-empirically for the orbital kinetic energy. This project also contributes directly to the education of undergraduate and graduate students, and to the professional development of postdoctoral researchers.This award supports fundamental theoretical research with an aim to improve the accuracy of density-functional based theories of materials. Analytical and numerical methods will be used. Density functional theory is widely used to predict a variety of materials properties, such as crystal structures, electron spin densities, and phonon modes. Another component of the PI's research would study fundamental problems associated with the electron gas and improved approximations for the kinetic energy. The homogeneous electron gas plays a fundamental role in the practical application of density functional theory. This award also supports education at the undergraduate, graduate, and postdoctoral levels.
该奖项支持理论研究和教育,部分原因是希望提高密度泛函理论在凝聚态物理和量子化学中的准确性。 PI描述了交换相关泛函近似的“阶梯”,其中第一级是局部自旋密度近似,第二级是广义梯度近似(GGA)。 这些标准的近似值不能使电子结构计算具有化学准确性。特别是,它们不能准确地描述强相关或强空间不均匀的密度,长链分子的极化率,或高度激发态。PI建议通过几个项目的工作来解决这些问题:(1)开发和测试交换相关函数的近似值,对应于近似值“阶梯”的第三和第四级。 元GGA将作为缓慢变化和等轨道密度极限之间的受控插值法开发。超广义遗传算法使用精确的交换能密度,以实现自由的自相互作用误差和正确的非均匀标度行为。(2)均匀的电子气将探索使用修改后的对密度泛函方法与自洽的电子-电子相互作用。精确的高密度和低密度极限之间的能量插值将用于探索自旋极化电子气。结果将与更昂贵的计算扩散蒙特卡罗计算。 (3)扩散蒙特卡罗,密度泛函理论和RPA研究的jeldom表面能将平行进行,以解决表面能计算使用扩散蒙特卡罗和其他方法之间的明显差异。(4)对真实的固体的计算将测试一个新的解析状态方程,并将为轨道相关的亚GGA和超GGA能量泛函构造一个Kohn-Sham势。(5)一个拉普拉斯水平的元GGA将被构造为非经验的轨道动能。 该项目还直接有助于本科生和研究生的教育,以及博士后研究人员的专业发展。该奖项支持基础理论研究,旨在提高基于密度泛函的材料理论的准确性。将使用分析和数值方法。密度泛函理论被广泛用于预测各种材料性质,例如晶体结构、电子自旋密度和声子模式。PI研究的另一个组成部分将研究与电子气相关的基本问题和改进的动能近似。均匀电子气在密度泛函理论的实际应用中起着基础性的作用。该奖项还支持本科,研究生和博士后水平的教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Perdew其他文献

John Perdew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Perdew', 18)}}的其他基金

Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    2344734
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    1939528
  • 财政年份:
    2020
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    1607868
  • 财政年份:
    2016
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    1305135
  • 财政年份:
    2013
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Continuing Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    0854769
  • 财政年份:
    2009
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    0501588
  • 财政年份:
    2005
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Continuing Grant
U.S.-Slovenian Materials Research: Solid State Tests of New Density Functionals
美国-斯洛文尼亚材料研究:新密度泛函的固态测试
  • 批准号:
    9800968
  • 财政年份:
    1998
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    9810620
  • 财政年份:
    1998
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Continuing Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    9521353
  • 财政年份:
    1995
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Continuing Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    9213755
  • 财政年份:
    1992
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Continuing Grant
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Research Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    2344734
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
  • 批准号:
    23K03250
  • 财政年份:
    2023
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
  • 批准号:
    2306011
  • 财政年份:
    2023
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
  • 批准号:
    EP/X038645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Research Grant
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
  • 批准号:
    2154371
  • 财政年份:
    2022
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Continuing Grant
Multi-marginal Optimal Transport: Generative models meet Density Functional Theory
多边际最优传输:生成模型满足密度泛函理论
  • 批准号:
    RGPIN-2022-05207
  • 财政年份:
    2022
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了