Spin Polarized Tunneling Studies in Transition Metals, Alloys and Heavy Fermions
过渡金属、合金和重费米子的自旋极化隧道研究
基本信息
- 批准号:0137632
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-01-01 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will explore electron spin properties, from both the fundamental physics point of view and from the viewpoint of the technologically important area of spintronics. The emphasis will be on surfaces and interfaces that form the basis of spin transport phenomena. The intention is also to extend the technique of spin-polarized tunneling into new areas: (1) Determination of its relation to crystalline direction, barrier interface, and bulk magnetic moment, (2) Analytical study of tunnel barriers. Though having been addressed for nearly thirty years by many theoretical approaches, the origin and the magnitude of the polarization values measured by tunneling remain an open question. This work will investigate the poorly understood relation between spin polarization of tunneling electrons on crystallographic orientation and surface band structure. This includes spin-polarized tunneling from epitaxial ferromagnetic films, interfacial-bonding effects and tunnel barrier properties. Fabrication techniques will manipulate the interfaces and barriers in planar thin film magnetic tunnel junctions in efforts to maximize the spin polarization values. Spin tunneling is influenced by delta dopants (with or without magnetic moment) in the tunnel barriers - mostly flipping the spins and, except for the case of Fe dopants, even enhancing the spin tunneling probability. This area is yet to be understood and will be well investigated. A state of the art MBE system makes it feasible to engineer thin films with new types of interface materials leading to unique electronic and magnetic properties. The theoretical support comes from Prof. William H. Butler of Oak Ridge National Lab whose expertise is in band structure calculations, interface effects as well as ferromagnetic tunnel junction structures. Spin tunneling studies will possibly be initiated, a first of its kind study in heavy Fermion systems, wherein temperature-induced changes and pressure-induced changes of the magnetic transitions occur. Students of all levels and postdocs will be involved in this investigation thus creating a pool of technical experts particularly in the future field of information technology - spintronics, and in general magnetism as well as thin film science.This condensed matter physics project broaden our fundamental understanding of electron spin properties (a topic in magnetism) by using the unique tool of spin polarized tunneling technique (a quantum phenomenon). The results will contribute to the knowledge base needed for possible future spin-based information technologies. The project will build on earlier successful work in spin tunneling plus transport, and at a later stage of the program will push toward the new frontiers by examining a new class of magnetic materials, so-called heavy Fermion metals. A major goals is to expand a new and promising interaction between theorists who are now working to analyze the spin tunneling experiments. In addition, the fabrication methods, using state of the art molecular beam epitaxy tools will manipulate the material interfaces and tunnel barriers to create novel materials and to maximize the spin polarization values. Measurements will be made in ambient as well as liquid helium temperatures in the presence of a small or large magnetic field. Some of the earlier results of this project have generated worldwide interest, both experimentally and theoretically, with many major companies involved in developing nonvolatile memory elements as well as sensors for ultrahigh-density recording. The project integrates research with the education and training of high-school students, undergraduate students, graduate students and post-doctoral fellows. The training will be in spin transport and in specialized areas such as nanotechnology. The highly educated and trained people will be well prepared for careers as educators and workers in the area of spin-based information storage technology.
本项目将从基础物理学和自旋电子学这一重要技术领域的角度探讨电子的自旋性质。 重点将放在形成自旋输运现象基础的表面和界面上。 同时也将自旋极化隧穿技术扩展到新的领域:(1)确定它与晶体方向、势垒界面和体磁矩的关系;(2)隧道势垒的解析研究。 尽管近30年来,许多理论方法都在研究,但隧道效应测量的偏振值的来源和大小仍然是一个悬而未决的问题。 这项工作将探讨晶体学取向上的隧穿电子的自旋极化与表面能带结构之间的关系。 这包括自旋极化隧道从外延铁磁薄膜,界面键合效应和隧道势垒特性。 制造技术将操纵平面薄膜磁性隧道结中的界面和势垒,以使自旋极化值最大化。 自旋隧穿受隧道势垒中的δ掺杂剂(具有或不具有磁矩)的影响-主要翻转自旋,并且除了Fe掺杂剂的情况之外,甚至增强自旋隧穿概率。 这一领域尚待了解,并将得到充分调查。 最先进的分子束外延系统使得利用新型界面材料设计薄膜成为可能,从而产生独特的电子和磁性。 本文的理论支持来自于威廉·H.巴特勒的橡树岭国家实验室,他的专长是带结构计算,界面效应以及铁磁隧道结结构。 自旋隧穿研究将可能启动,这是重费米子系统中的第一次此类研究,其中发生温度引起的变化和压力引起的磁跃迁变化。 各级学生和博士后将参与这项调查,从而创造了一个技术专家库,特别是在未来的信息技术领域-自旋电子学,这个凝聚态物理学项目通过使用自旋极化隧穿技术(一种量子现象)的独特工具,拓宽了我们对电子自旋性质(磁学中的一个主题)的基本理解。 研究结果将有助于建立未来可能的自旋信息技术所需的知识基础。 该项目将建立在早期成功的自旋隧穿和传输工作的基础上,在该计划的后期阶段,将通过研究一类新的磁性材料,即所谓的重费米子金属,来推动新的前沿。 一个主要的目标是扩大一个新的和有前途的相互作用的理论家谁现在正在努力分析自旋隧道实验。 此外,使用最先进的分子束外延工具的制造方法将操纵材料界面和隧道势垒,以创建新的材料并使自旋极化值最大化。 测量将在环境温度和液氦温度下,在存在小或大磁场的情况下进行。该项目的一些早期成果在实验和理论上都引起了世界范围的兴趣,许多大公司参与开发非易失性存储元件以及超高密度记录传感器。 该项目将研究与高中生、本科生、研究生和博士后研究员的教育和培训结合起来。 培训将在自旋运输和专门领域,如纳米技术。 受过高等教育和培训的人将为在基于自旋的信息存储技术领域从事教育工作者和工作者的职业做好充分准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jagadeesh Moodera其他文献
Jagadeesh Moodera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jagadeesh Moodera', 18)}}的其他基金
Correlated Quantum Phenomena at Superconductor/Magnetic Interfaces
超导/磁界面的相关量子现象
- 批准号:
2218550 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track C: Synergistic Thrusts Towards Practical Topological Quantum Computing
NSF 融合加速器轨道 C:对实用拓扑量子计算的协同推动
- 批准号:
2040620 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Surface/Interface Phenomena and Topological Order in Emerging Quantum Materials
新兴量子材料中的表面/界面现象和拓扑顺序
- 批准号:
1700137 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Investigating Two-Dimensional Systems and Surface States Under the Influence of an Internal Exchange Field and Spin-Filtering
研究内部交换场和自旋过滤影响下的二维系统和表面态
- 批准号:
1207469 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
2006 Gordon Conference: Magnetic Nanostructures; Queens College; Oxford, UK; September 3-8, 2006
2006年戈登会议:磁性纳米结构;
- 批准号:
0628863 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Spin Transport Studies In Band And Interface Tailord Materials: Towards Total Spin Polarization For Spin Electronics
带和界面定制材料中的自旋输运研究:自旋电子学的总自旋极化
- 批准号:
0504158 - 财政年份:2005
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
US-India Cooperative Research: Role of Interface in Magnetic Interaction and Spin Polarized Tunneling
美印合作研究:界面在磁相互作用和自旋极化隧道中的作用
- 批准号:
9908611 - 财政年份:1999
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Tunneling Studies of Ferromagnetic Junctions and Interfaces
铁磁结和界面的隧道研究
- 批准号:
9730908 - 财政年份:1998
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Spin-polarized Electron Tunneling with Ferromagnetic Materials
铁磁材料的自旋极化电子隧道
- 批准号:
9423013 - 财政年份:1995
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似海外基金
Development of spin-polarized scanning tunneling luminescence spectroscopy for elucidation of spin-photon conversion in two-dimensional semiconductors
开发自旋偏振扫描隧道发光光谱以阐明二维半导体中的自旋光子转换
- 批准号:
17K18766 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Spin-polarized scanning tunneling microscopy on ultrathin iron films on Be(0001)
Be(0001) 上超薄铁膜的自旋偏振扫描隧道显微镜
- 批准号:
339482673 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Research Grants
Study on catalytic activity of oxide surface using single molecule labeling and spin polarized tunneling electron spectroscopy
单分子标记和自旋极化隧道电子能谱研究氧化物表面催化活性
- 批准号:
16H03863 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spin-Polarized Scanning Tunneling Microscopy of Novel Electronic Materials
新型电子材料的自旋偏振扫描隧道显微镜
- 批准号:
420407-2012 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Spin-polarized scanning tunneling spectroscopy on correlated electron systems
相关电子系统上的自旋偏振扫描隧道光谱
- 批准号:
219591251 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Research Grants
Spin-Polarized Scanning Tunneling Microscopy of Novel Electronic Materials
新型电子材料的自旋偏振扫描隧道显微镜
- 批准号:
420407-2012 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Spin-polarized scanning tunneling microscope: a critical instrument for expanding the functionality of state-of-the-art oxide Molecular Beam Epitaxy (MBE) system
自旋偏振扫描隧道显微镜:扩展最先进氧化物分子束外延 (MBE) 系统功能的关键仪器
- 批准号:
LE130100106 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Spin-Polarized Scanning Tunneling Microscopy of Novel Electronic Materials
新型电子材料的自旋偏振扫描隧道显微镜
- 批准号:
420407-2012 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of a spin-polarized scanning tunneling potentiometry system and its application to micro fabricated surface Rashba systems
自旋极化扫描隧道电位系统的开发及其在微加工表面Rashba系统中的应用
- 批准号:
23686007 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Time resolved spin polarized scanning tunneling microscopy
时间分辨自旋偏振扫描隧道显微镜
- 批准号:
333229-2008 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Postgraduate Scholarships - Doctoral