FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
基本信息
- 批准号:0139740
- 负责人:
- 金额:$ 6.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fundamental problems are addressed in wavelet theory, non-uniformsampling, frames, and the theory of spectral-tile duality. Theseproblems are inextricably interwoven by concept andtechnique. Operator theory provides the major unifying framework,combined with an integration of ideas from a diverse spectrum ofmathematics including classical Fourier analysis, noncommutativeharmonic analysis, representation theory, operator algebras,approximation theory, and signal processing. For example, theconstruction, implementation, and ensuing theory of single dyadicorthonormal wavelets in Euclidean space requires significant inputfrom all of these disciplines as well as deep spectral-tile results.There is intrinsic mathematical importance in the aforementioned problems, and the solutions to be formulated have broad and creative implications, both for mathematics and for applications in engineering and physics. The topics of this project have direct bearing on fast acquisition and motion problems in MRI, as well as in formulating algorithms for compression and noise reduction by means of proper cochlear modelling. There are furtherapplications in quantum computing and image processing, and the development of non-uniform sampling strategies by this project play a role in state of the art A/D conversion methods used in multifunction RF systems. These interdisciplinary applications depending on modern mathematical analysis have educational implications in terms of cross-fertilization of ideas and researchopportunities for graduate students.
在小波理论,非均匀采样,帧,和频谱瓦片对偶理论的基本问题得到解决。这些问题是由概念和技术不可分割地交织在一起。算子理论提供了主要的统一框架,结合了各种数学思想,包括经典傅立叶分析、非对易调和分析、表示论、算子代数、近似理论和信号处理。 例如,欧几里得空间中单个二元正交正规小波的构造、实现和随后的理论需要所有这些学科的大量输入以及深入的谱图结果。上述问题具有内在的数学重要性,并且要制定的解决方案具有广泛和创造性的影响,无论是对于数学还是工程和物理应用。该项目的主题直接关系到MRI中的快速采集和运动问题,以及通过适当的耳蜗建模制定压缩和降噪算法。在量子计算和图像处理中有进一步的应用,本项目开发的非均匀采样策略在多功能RF系统中使用的最先进的A/D转换方法中发挥作用。 这些基于现代数学分析的跨学科应用在研究生的思想交流和研究机会方面具有教育意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akram Aldroubi其他文献
Reconstruction Algorithms for Source Term Recovery from Dynamical Samples in Catalyst Models
- DOI:
10.1007/s00041-025-10184-5 - 发表时间:
2025-07-08 - 期刊:
- 影响因子:1.200
- 作者:
Akram Aldroubi;Le Gong;Ilya Krishtal;Brendan Miller;Sumati Thareja - 通讯作者:
Sumati Thareja
Designing Multiresolution Analysis-type Wavelets and Their Fast Algorithms
- DOI:
10.1007/s00041-001-4025-4 - 发表时间:
1995-04-01 - 期刊:
- 影响因子:1.200
- 作者:
Patrice Abry;Akram Aldroubi - 通讯作者:
Akram Aldroubi
Akram Aldroubi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akram Aldroubi', 18)}}的其他基金
Conference: International Conference on Approximation Theory and Beyond
会议:近似理论及其超越国际会议
- 批准号:
2314578 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
- 批准号:
2208030 - 财政年份:2022
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
International Conference on Computational Harmonic Analysis, May 19-23, 2014
国际计算调和分析会议,2014 年 5 月 19-23 日
- 批准号:
1348777 - 财政年份:2014
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Dynamical sampling and reconstruction for sensing networks of physical fields
合作研究:ATD:物理场传感网络的动态采样和重建
- 批准号:
1322099 - 财政年份:2013
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Union of Subspaces and Manifold Data Modeling: Theory, Algorithms, Testing, and Applications
子空间并集和流形数据建模:理论、算法、测试和应用
- 批准号:
1108631 - 财政年份:2011
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Non-linear signal representations: theory, algorithms and applications
非线性信号表示:理论、算法和应用
- 批准号:
0807464 - 财政年份:2008
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Data, Signal, and Image Modeling: Theory and Algorithms
数据、信号和图像建模:理论和算法
- 批准号:
0504788 - 财政年份:2005
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
International Conference on Computational Harmonic Analysis and Applications
计算谐波分析及应用国际会议
- 批准号:
0341859 - 财政年份:2004
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Non-uniform sampling and reconstruction:Theory and algorithms
非均匀采样与重建:理论与算法
- 批准号:
0103104 - 财政年份:2001
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
A Mathematical Framework for Tensor Image Processing
张量图像处理的数学框架
- 批准号:
9805483 - 财政年份:1998
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant