A Mathematical Framework for Tensor Image Processing

张量图像处理的数学框架

基本信息

  • 批准号:
    9805483
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-15 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

Aldroubi9805483The investigator develops a mathematical framework for representing discrete tensor images that is suited to post-processing applications, such as pattern recognition, registration and geometric transformations. In particular, he constructs atomic Wiener amalgam tensor spaces that consist of continuous tensor fields, and establishes conditions on the generating tensors that guarantee that the discrete tensor field spaces obtained by any regular sampling of the continuous spaces are atomic and are isomorphic to the continuous spaces. Using the connection between the approximation problems in atomic spaces and the filtering paradigm in signal and image processing, he develops and implements fast filtering algorithms for various fundamental processing operators, such as noise reduction, rotation, translation, and general affine transformations. Because tensor image data possess spatial information about the fiber structure and geometry of materials, tissues, or organs, he also uses results from differential geometry to extract different architectural features of ordered media. Part of the project is devoted to testing the accuracy, precision and speed of these algorithms. For this purpose, he generates synthetic data sets and also uses real data acquired from in vivo clinical diffusion tensor MRI studies, and other imaging modalities, to evaluate the performance of these algorithms.This project is motivated primarily by the need to process and analyze clinical data obtained from diffusion tensor MRI, a new noninvasive imaging modality that allows physicians to visualize nerve and muscle fiber tracts in the body. However, the mathematics developed here is applicable to processing and analyzing data acquired from a much larger number of imaging devices and modalities used in diverse application areas including medicine, material sciences, oceanography, meteorology, fluid mechanics, satellite reconnaissance, and astronomy. Many new scanning systems measure several quantities at each point or position within an image rather than a single quantity. These lists of numbers may represent important physical quantities, such as velocities or displacements, or the amount of light absorbed, reflected, or emitted at different wavelengths at a particular location. The theory being developed here provides a rational means to represent, process, analyze and compress this data -- a problem which no theory currently treats. In addition, this work is intended to ameliorate many problems inherent in the measurement of these new types of data sets. In particular, imaging data are usually corrupted by noise, are discrete rather than continuous, and are spatially averaged. Finally, because these new imaging modalities can generate vast amounts of data, the algorithms that the investigator implements for representing, processing, analyzing, and compressing the data must be fast and efficient, as well.
Aldroubi9805483研究人员开发了一种用于表示离散张量图像的数学框架,该框架适用于后处理应用,例如模式识别、配准和几何变换。特别地,他构造了由连续张量场组成的原子Wiener汞齐张量空间,并建立了生成张量的条件,保证了由连续空间的任意正则抽样得到的离散张量场空间是原子的,并且与连续空间同构。利用原子空间中的近似问题与信号和图像处理中的滤波范例之间的联系,他开发并实现了各种基本处理算子的快速滤波算法,如降噪、旋转、平移和一般仿射变换。由于张量图像数据具有关于材料、组织或器官的纤维结构和几何形状的空间信息,他还使用微分几何的结果来提取有序介质的不同建筑特征。该项目的一部分致力于测试这些算法的准确性、精确度和速度。为此,他生成了合成数据集,并使用从体内临床扩散张量MRI研究和其他成像方式获得的真实数据来评估这些算法的性能。该项目的主要动机是处理和分析从扩散张量MRI获得的临床数据,这是一种新的非侵入性成像方式,使医生能够可视化体内的神经和肌肉纤维束。然而,这里开发的数学适用于处理和分析从医学、材料科学、海洋学、气象学、流体力学、卫星侦察和天文学等不同应用领域使用的大量成像设备和模式获取的数据。许多新的扫描系统在图像中的每个点或位置测量多个量,而不是单一的量。这些数字列表可能代表重要的物理量,如速度或位移,或在特定位置以不同波长吸收、反射或发射的光量。这里正在开发的理论提供了一种合理的方法来表示、处理、分析和压缩这些数据--这是一个目前没有理论处理的问题。此外,这项工作旨在改善这些新类型数据集的测量中固有的许多问题。特别是,成像数据通常被噪声破坏,是离散的而不是连续的,并且是空间平均的。最后,由于这些新的成像模式可以生成海量数据,研究人员实现的表示、处理、分析和压缩数据的算法也必须是快速和高效的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akram Aldroubi其他文献

Reconstruction Algorithms for Source Term Recovery from Dynamical Samples in Catalyst Models
  • DOI:
    10.1007/s00041-025-10184-5
  • 发表时间:
    2025-07-08
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Akram Aldroubi;Le Gong;Ilya Krishtal;Brendan Miller;Sumati Thareja
  • 通讯作者:
    Sumati Thareja
Designing Multiresolution Analysis-type Wavelets and Their Fast Algorithms

Akram Aldroubi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akram Aldroubi', 18)}}的其他基金

Conference: International Conference on Approximation Theory and Beyond
会议:近似理论及其超越国际会议
  • 批准号:
    2314578
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
  • 批准号:
    2208030
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
International Conference on Computational Harmonic Analysis, May 19-23, 2014
国际计算调和分析会议,2014 年 5 月 19-23 日
  • 批准号:
    1348777
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Dynamical sampling and reconstruction for sensing networks of physical fields
合作研究:ATD:物理场传感网络的动态采样和重建
  • 批准号:
    1322099
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Union of Subspaces and Manifold Data Modeling: Theory, Algorithms, Testing, and Applications
子空间并集和流形数据建模:理论、算法、测试和应用
  • 批准号:
    1108631
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Non-linear signal representations: theory, algorithms and applications
非线性信号表示:理论、算法和应用
  • 批准号:
    0807464
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Data, Signal, and Image Modeling: Theory and Algorithms
数据、信号和图像建模:理论和算法
  • 批准号:
    0504788
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
International Conference on Computational Harmonic Analysis and Applications
计算谐波分析及应用国际会议
  • 批准号:
    0341859
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
  • 批准号:
    0139740
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Non-uniform sampling and reconstruction:Theory and algorithms
非均匀采样与重建:理论与算法
  • 批准号:
    0103104
  • 财政年份:
    2001
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
  • 批准号:
    2303334
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2216903
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2217081
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
  • 批准号:
    2217154
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2217089
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
A Tensor-based Data Representation and Processing Framework in Cyber-Physical-Social Systems
网络物理社会系统中基于张量的数据表示和处理框架
  • 批准号:
    RGPIN-2014-06326
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2234376
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
A Tensor-based Data Representation and Processing Framework in Cyber-Physical-Social Systems
网络物理社会系统中基于张量的数据表示和处理框架
  • 批准号:
    RGPIN-2014-06326
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A Tensor-based Data Representation and Processing Framework in Cyber-Physical-Social Systems
网络物理社会系统中基于张量的数据表示和处理框架
  • 批准号:
    RGPIN-2014-06326
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A Tensor-based Data Representation and Processing Framework in Cyber-Physical-Social Systems
网络物理社会系统中基于张量的数据表示和处理框架
  • 批准号:
    RGPIN-2014-06326
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了