A Mathematical Framework for Tensor Image Processing

张量图像处理的数学框架

基本信息

  • 批准号:
    9805483
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-15 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

Aldroubi9805483The investigator develops a mathematical framework for representing discrete tensor images that is suited to post-processing applications, such as pattern recognition, registration and geometric transformations. In particular, he constructs atomic Wiener amalgam tensor spaces that consist of continuous tensor fields, and establishes conditions on the generating tensors that guarantee that the discrete tensor field spaces obtained by any regular sampling of the continuous spaces are atomic and are isomorphic to the continuous spaces. Using the connection between the approximation problems in atomic spaces and the filtering paradigm in signal and image processing, he develops and implements fast filtering algorithms for various fundamental processing operators, such as noise reduction, rotation, translation, and general affine transformations. Because tensor image data possess spatial information about the fiber structure and geometry of materials, tissues, or organs, he also uses results from differential geometry to extract different architectural features of ordered media. Part of the project is devoted to testing the accuracy, precision and speed of these algorithms. For this purpose, he generates synthetic data sets and also uses real data acquired from in vivo clinical diffusion tensor MRI studies, and other imaging modalities, to evaluate the performance of these algorithms.This project is motivated primarily by the need to process and analyze clinical data obtained from diffusion tensor MRI, a new noninvasive imaging modality that allows physicians to visualize nerve and muscle fiber tracts in the body. However, the mathematics developed here is applicable to processing and analyzing data acquired from a much larger number of imaging devices and modalities used in diverse application areas including medicine, material sciences, oceanography, meteorology, fluid mechanics, satellite reconnaissance, and astronomy. Many new scanning systems measure several quantities at each point or position within an image rather than a single quantity. These lists of numbers may represent important physical quantities, such as velocities or displacements, or the amount of light absorbed, reflected, or emitted at different wavelengths at a particular location. The theory being developed here provides a rational means to represent, process, analyze and compress this data -- a problem which no theory currently treats. In addition, this work is intended to ameliorate many problems inherent in the measurement of these new types of data sets. In particular, imaging data are usually corrupted by noise, are discrete rather than continuous, and are spatially averaged. Finally, because these new imaging modalities can generate vast amounts of data, the algorithms that the investigator implements for representing, processing, analyzing, and compressing the data must be fast and efficient, as well.
Aldroubi9805483研究者开发了一个数学框架,用于表示离散张量图像,该量子适用于后处理应用程序,例如模式识别,注册和几何变换。 特别是,他构建了由连续张量场组成的原子维也纳汞合金张量张量空间,并在生成张量的情况下建立条件,以确保通过连续空间的任何定期采样获得的离散张量场空间是原子的,并且是与连续空间相同的。 使用原子空间中的近似问题与信号和图像处理中的过滤范式之间的连接,他为各种基本处理操作员(例如降低噪声,旋转,翻译和一般仿射变换)开发和实施快速过滤算法。 由于张量图像数据具有有关材料,组织或器官的纤维结构和几何形状的空间信息,因此他还使用差异几何形状的结果来提取有序介质的不同建筑特征。 该项目的一部分致力于测试这些算法的准确性,精度和速度。 For this purpose, he generates synthetic data sets and also uses real data acquired from in vivo clinical diffusion tensor MRI studies, and other imaging modalities, to evaluate the performance of these algorithms.This project is motivated primarily by the need to process and analyze clinical data obtained from diffusion tensor MRI, a new noninvasive imaging modality that allows physicians to visualize nerve and muscle fiber tracts在体内。 但是,此处开发的数学适用于从大量的成像设备和不同应用领域中使用的大量成像设备和方式获得的数据,包括医学,材料科学,海洋学,气象学,流体力学,卫星侦察和天文学。 许多新的扫描系统在图像中的每个点或位置都测量了几个数量,而不是单个数量。 这些数字列表可能代表重要的物理量,例如速度或位移,或在特定位置在不同波长下吸收,反射或发射的光量。 此处开发的理论提供了一种理性的手段来表示,处理,分析和压缩这些数据 - 这一问题目前尚无理论对待。 此外,这项工作旨在改善这些新类型数据集的测量中固有的许多问题。 特别是,成像数据通常被噪声损坏,离散而不是连续,并且在空间上平均。 最后,由于这些新成像方式可以生成大量数据,因此研究者实施用于表示,处理,分析和压缩数据的算法也必须快速有效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akram Aldroubi其他文献

Akram Aldroubi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akram Aldroubi', 18)}}的其他基金

Conference: International Conference on Approximation Theory and Beyond
会议:近似理论及其超越国际会议
  • 批准号:
    2314578
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
  • 批准号:
    2208030
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
International Conference on Computational Harmonic Analysis, May 19-23, 2014
国际计算调和分析会议,2014 年 5 月 19-23 日
  • 批准号:
    1348777
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Dynamical sampling and reconstruction for sensing networks of physical fields
合作研究:ATD:物理场传感网络的动态采样和重建
  • 批准号:
    1322099
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Union of Subspaces and Manifold Data Modeling: Theory, Algorithms, Testing, and Applications
子空间并集和流形数据建模:理论、算法、测试和应用
  • 批准号:
    1108631
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Non-linear signal representations: theory, algorithms and applications
非线性信号表示:理论、算法和应用
  • 批准号:
    0807464
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Data, Signal, and Image Modeling: Theory and Algorithms
数据、信号和图像建模:理论和算法
  • 批准号:
    0504788
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
International Conference on Computational Harmonic Analysis and Applications
计算谐波分析及应用国际会议
  • 批准号:
    0341859
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
  • 批准号:
    0139740
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Non-uniform sampling and reconstruction:Theory and algorithms
非均匀采样与重建:理论与算法
  • 批准号:
    0103104
  • 财政年份:
    2001
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

张量框架下EMVS-MIMO雷达参数估计研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
张量框架下基于谱图学习的子空间聚类模型及算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
张量框架下EMVS-MIMO雷达参数估计研究
  • 批准号:
    62271286
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
张量框架下基于谱图学习的子空间聚类模型及算法研究
  • 批准号:
    62272313
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于张量分解框架的深度学习信息隐藏对抗研究
  • 批准号:
    61772349
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
  • 批准号:
    2303334
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2216903
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2217081
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
  • 批准号:
    2217154
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2217089
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了