Non-uniform sampling and reconstruction:Theory and algorithms

非均匀采样与重建:理论与算法

基本信息

  • 批准号:
    0103104
  • 负责人:
  • 金额:
    $ 14.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

Aldroubi0103104 The investigator and his colleagues develop a mathematicalframework and fast computational schemes for the reconstructionof functions, signals or images from noisy, very large sampleddata sets, acquired on nonuniform grids, by nonideal acquisitiondevices. The problem of nonuniform sampling and reconstructionis treated in the context of shift-invariant subspaces, Besovspaces, and in arbitrary dimensions. The theory is developed forthe case when the samples are obtained from weighted averages.Density conditions for exact reconstruction are established. Whenthe data are noisy, incomplete, or when the assumptions neededfor exact reconstruction are not satisfied, bounds on the errorbetween the reconstructed and original signal are derived interms of the sampling densities, the averaging functionals, andthe noise statistics. The development of the mathematicalframework and the computational schemes requires a new set oftechniques and ideas, and involves several areas of mathematicsincluding wavelet theory, frame theory, functional analysis, andharmonic analysis. The project is motivated by problems arising in datatransmission, geophysical exploration, astronomy, spectroscopy,and biomedical imaging. The problem of reconstructing a signal oran image from a set of nonuniform samples is encountered in manyapplications of signal or image processing. For example, the lossof data packets during transmission through internet or fromsatellites can be viewed as a nonuniform sampling andreconstruction problem. In geophysical exploration, the earth'smagnetic field is measured by a combination of airborn, fastmoving acquisition devices, as well as scattered stationarydevices resulting in highly nonuniform sampling patterns, and ahuge data set. The goal is to reconstruct the magnetic field anduse it to reveal geological features. In fact, modern digitaldata processing of signals or images always uses a sampledversion of the original analog signals or images. However, thesampling devices are never ideal, and the collected data consistof average samples. Moreover these data are often very large,incomplete, and corrupted by noise. The question then ariseswhether and how the original signal can be recovered from thedata. Therefore the investigator aims to 1) quantify theconditions under which it is possible to reconstruct a signalexactly from different sets of nonuniform average-samples; 2) usethese analytical results to develop explicit, and computationallyefficient reconstruction schemes; and 3) analyze the performanceof the algorithms under adverse conditions, or when the data areincomplete or corrupted by noise. The development of a theory andalgorithms that perform well under stringent and realisticsituations will help the analysis, processing and management ofvery large data sets obtained digitally by new acquisitionmodalities, and transmitted or received by communication networkssuch as the internet, cellular phones, and other distributedcommunication systems.
研究者和他的同事们开发了一个数学框架和快速计算方案,用于从嘈杂的、非常大的采样数据集中重建函数、信号或图像,这些数据集是通过非理想采集设备在非均匀网格上获取的。在平移不变子空间、besovspace和任意维空间中处理非均匀采样和重构问题。该理论是针对从加权平均中获得样本的情况而开发的。建立了精确重建的密度条件。当数据有噪声、不完整或不满足精确重建所需的假设时,根据采样密度、平均函数和噪声统计量推导出重建信号与原始信号之间的误差界限。数学框架和计算方案的发展需要一套新的技术和思想,涉及到几个数学领域,包括小波理论、框架理论、泛函分析和谐波分析。该项目的动机是在数据传输、地球物理勘探、天文学、光谱学和生物医学成像中出现的问题。在信号或图像处理的许多应用中,都会遇到从一组非均匀样本中重建信号或图像的问题。例如,在互联网或卫星传输过程中丢失的数据包可以看作是一个非均匀采样重建问题。在地球物理勘探中,地球磁场的测量是由机载、快速移动的采集设备和分散的静止设备的组合进行的,这导致了高度不均匀的采样模式和庞大的数据集。目标是重建磁场,并利用它来揭示地质特征。事实上,信号或图像的现代数字数据处理总是使用原始模拟信号或图像的采样版本。然而,采样设备从来都不是理想的,采集的数据由平均样本组成。此外,这些数据往往非常大,不完整,并被噪声损坏。那么问题来了,是否以及如何从数据中恢复原始信号。因此,研究者的目标是1)量化从不同的非均匀平均样本集精确地重建信号的条件;2)利用这些分析结果制定明确的、计算效率高的重建方案;3)分析算法在不利条件下的性能,或者当数据不完整或被噪声破坏时的性能。在严格和现实的情况下表现良好的理论和算法的发展将有助于分析,处理和管理通过新的获取方式获得的非常大的数据集,并通过通信网络(如互联网,蜂窝电话和其他分布式通信系统)传输或接收。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akram Aldroubi其他文献

Reconstruction Algorithms for Source Term Recovery from Dynamical Samples in Catalyst Models
  • DOI:
    10.1007/s00041-025-10184-5
  • 发表时间:
    2025-07-08
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Akram Aldroubi;Le Gong;Ilya Krishtal;Brendan Miller;Sumati Thareja
  • 通讯作者:
    Sumati Thareja
Designing Multiresolution Analysis-type Wavelets and Their Fast Algorithms

Akram Aldroubi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akram Aldroubi', 18)}}的其他基金

Conference: International Conference on Approximation Theory and Beyond
会议:近似理论及其超越国际会议
  • 批准号:
    2314578
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
  • 批准号:
    2208030
  • 财政年份:
    2022
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
International Conference on Computational Harmonic Analysis, May 19-23, 2014
国际计算调和分析会议,2014 年 5 月 19-23 日
  • 批准号:
    1348777
  • 财政年份:
    2014
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Dynamical sampling and reconstruction for sensing networks of physical fields
合作研究:ATD:物理场传感网络的动态采样和重建
  • 批准号:
    1322099
  • 财政年份:
    2013
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant
Union of Subspaces and Manifold Data Modeling: Theory, Algorithms, Testing, and Applications
子空间并集和流形数据建模:理论、算法、测试和应用
  • 批准号:
    1108631
  • 财政年份:
    2011
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Non-linear signal representations: theory, algorithms and applications
非线性信号表示:理论、算法和应用
  • 批准号:
    0807464
  • 财政年份:
    2008
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
Data, Signal, and Image Modeling: Theory and Algorithms
数据、信号和图像建模:理论和算法
  • 批准号:
    0504788
  • 财政年份:
    2005
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
International Conference on Computational Harmonic Analysis and Applications
计算谐波分析及应用国际会议
  • 批准号:
    0341859
  • 财政年份:
    2004
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
  • 批准号:
    0139740
  • 财政年份:
    2002
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
A Mathematical Framework for Tensor Image Processing
张量图像处理的数学框架
  • 批准号:
    9805483
  • 财政年份:
    1998
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
微分遍历理论和廖山涛的一些方法的应用
  • 批准号:
    10671006
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Chinese language versions of the National Alzheimer's Coordinating Center's Uniform Data Set version 4: a linguistic and cultural adaptation study
国家阿尔茨海默病协调中心统一数据集第4版中文版:语言和文化适应研究
  • 批准号:
    10740587
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
A micro-dissection platform for generating uniform-sized patient-derived tumor organoids (PDOs) for personalized cancer therapy
一个显微解剖平台,用于生成大小一致的患者来源的肿瘤类器官(PDO),用于个性化癌症治疗
  • 批准号:
    10697348
  • 财政年份:
    2022
  • 资助金额:
    $ 14.75万
  • 项目类别:
Digital Anti-Aliasing FIR filter for Inverter-based Non-uniform Sampling Flash ADC in Neural Implant
用于神经植入中基于逆变器的非均匀采样闪存 ADC 的数字抗混叠 FIR 滤波器
  • 批准号:
    562074-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 14.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Evaluating Chinese-speaking community-dwelling elders in the United States with the Uniform Data Set
用统一数据集评估美国社区华语老年人
  • 批准号:
    10170514
  • 财政年份:
    2019
  • 资助金额:
    $ 14.75万
  • 项目类别:
EARS: Enabling Opportunistic Environmental Monitoring with Non-Uniform Sampling and Processing Circuits
EARS:通过非均匀采样和处理电路实现机会环境监测
  • 批准号:
    1643004
  • 财政年份:
    2016
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
UNIFORM NATURALISTIC TEENAGE DRIVING DATA SET-3
统一自然青少年驾驶数据集-3
  • 批准号:
    9356763
  • 财政年份:
    2016
  • 资助金额:
    $ 14.75万
  • 项目类别:
Non-Uniform Sampling法による未検出ピークの構造情報からの追跡
使用非均匀采样方法跟踪结构信息中未检测到的峰
  • 批准号:
    16H00313
  • 财政年份:
    2016
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
Non-uniform sampling of permutations and large scale hypothesis testing
排列的非均匀采样和大规模假设检验
  • 批准号:
    1521145
  • 财政年份:
    2015
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant
Development of safe non-uniform sampling processing method and its application into proteins
安全非均匀采样处理方法的开发及其在蛋白质中的应用
  • 批准号:
    22770106
  • 财政年份:
    2010
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Uniform length DNA for paired end nextgen sequencing via in vitro packaging
通过体外包装实现配对末端下一代测序的均一长度 DNA
  • 批准号:
    8001230
  • 财政年份:
    2010
  • 资助金额:
    $ 14.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了