Collaborative Research: FRG: Minimal Surfaces, Moduli Spaces, and Computation

合作研究:FRG:最小曲面、模空间和计算

基本信息

  • 批准号:
    0139887
  • 负责人:
  • 金额:
    $ 42.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

The global theory of minimal surfaces in space is in a phase ofexplosive growth. Many new methods of constructing completeembedded minimal surfaces have recently been found; in place of adearth of examples just a few years ago, we now have a quitevaried collection of surfaces, including infinite families. Abasic problem is to classify these examples, i.e. collect theminto families with common properties and understoodlimits. Fruitful approaches have recently been developed thatcombine numerical simulation with methods from the theory ofgeometric structures on surfaces and classical complex analysis,notably Teichmuller theory. Some of the problems the team willattack are: Are there embedded minimal surfaces with oneheliciodal end and arbitrary genus? Is the classical Scherksurface the unique desingularization of a pair of planes? Ofwhat families is the Scherk surface the limit point? At the sametime, the group hopes to make progress on simulation of minimalsurfaces. For example, we hope to set up a library of Weierstrassrepresentations of minimal surfaces which is reproducible, fullydocumented, and useful as a research tool.A guiding philosophy in many areas of science, from physics tobiochemistry to ecology, is that nature is maximally efficient;indeed, many explanations of natural phenomena have at theirfoundation the assumption that the phenomenon has optimized someor several of its features in the expression we witness. At itsbase, this philosophical principle is mathematical in nature: wesearch for principles in science that can be formulated asextremal problems. In mathematics, we can make this assumption ofoptimality very rigorous by expressing it as an equation. Thisleaves us with the problem of understanding all of the solutionsof that equation. In this project, we aim to study one very richtype of optimization problem, the minimal surface problem, whichis already known to have a number of quite subtlecharacteristics. (A minimal surface is one for which each smallpiece has less area than any other surface with the sameboundary.) The study of these surfaces has its origins inphysical problems studied first by Euler; then, a century later,the problem also arose in the studies of the behavior of rotatingdroplets and soap films by F. Plateau. Today the applicationsrange from cosmology to the understanding of the structure ofstable periodic structures in compound copolymers. As in manyother optimization problems, for the minimal surface problem, wedo not have much general information about solutions to theequation expressing extremality. At present though, we do have awide variety of examples which help to guide our intuition, andwhich we are beginning to organize. It is thus a good modelproblem, enriching our understanding of all optimizationproblems.
空间极小曲面的整体理论正处于爆炸性发展阶段。最近发现了许多构造完全嵌入极小曲面的新方法;取代了几年前的大量例子,我们现在有了各种各样的曲面集合,包括无限族。一个基本的问题是对这些例子进行分类,即将它们收集到具有共同属性和理解限制的族中。近年来,将数值模拟与曲面几何结构理论和经典复分析方法相结合,取得了丰硕的成果,其中最著名的是TeichMuller理论。该团队将解决的一些问题是:是否存在具有一个螺旋节末端和任意亏格的嵌入极小曲面?经典ScherkSurface是一对平面的唯一去单形化吗?谢尔克曲面是什么家族的极限点?与此同时,该小组希望在极小曲面的模拟方面取得进展。例如,我们希望建立一个极小表面的魏尔斯特拉表示库,它是可重现的,有完整记录的,并可用作研究工具。从物理到生物化学再到生态学,许多科学领域的指导哲学是自然是最有效的;事实上,许多对自然现象的解释都建立在这样的假设基础上,即这种现象在我们看到的表达式中优化了它的一些或几个特征。从根本上说,这一哲学原则本质上是数学的:我们在科学中寻找可以被表述为极端问题的原则。在数学中,我们可以通过将其表示为方程来使这一最优性假设非常严格。这就给我们留下了理解该方程的所有解的问题。在这个项目中,我们的目标是研究一类非常丰富的优化问题--极小曲面问题,它已经被认为具有许多非常微妙的特征。(最小曲面是指每个小块的面积比具有相同边界的任何其他曲面都小的曲面。)对这些表面的研究起源于欧拉首先研究的物理问题;一个世纪后,这个问题也出现在F·普拉特对旋转液滴和肥皂膜的行为的研究中。今天的应用范围从宇宙学到了解化合物共聚物中稳定的周期结构的结构。与许多其他优化问题一样,对于极小曲面问题,我们没有太多关于表示极值的方程的解的一般信息。然而,目前我们确实有各种各样的例子来帮助指导我们的直觉,我们正在开始组织这些例子。因此,它是一个很好的模型问题,丰富了我们对所有优化问题的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Wolf其他文献

An embedded genus-one helicoid.
嵌入的一属螺旋面。
The plumbing of minimal area surfaces
最小面积表面的管道
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Wolf;B. Zwiebach
  • 通讯作者:
    B. Zwiebach
Limits in ?ℳℱ of Teichmüller geodesics
Teichmüller 测地线 ?ℳℱ 的极限
Multifocal Cholesteatoma of the External Auditory Canal following Blast Injury
爆炸伤后外耳道多灶性胆脂瘤
Die Anatomie des Beckenbodens
贝肯博登解剖学
  • DOI:
    10.1055/a-2068-2834
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Wolf
  • 通讯作者:
    Michael Wolf

Michael Wolf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Wolf', 18)}}的其他基金

Geometric Variational Problems in Classical and Higher Rank Teichmuller theory
经典和高阶Teichmuller理论中的几何变分问题
  • 批准号:
    2005551
  • 财政年份:
    2020
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
  • 批准号:
    2001095
  • 财政年份:
    2020
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Creating technical leaders from early collegians of exceptional promise: a comprehensive program for demolishing barriers to persistence.
从具有杰出前途的早期大学生中培养技术领导者:消除持久障碍的综合计划。
  • 批准号:
    1565032
  • 财政年份:
    2016
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric Structures of Higher Teichmuller Spaces
FRG:合作研究:高等Teichmuller空间的几何结构
  • 批准号:
    1564374
  • 财政年份:
    2016
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
The Fifth Ahlfors-Bers Colloquium (2011)
第五届 Ahlfors-Bers 研讨会 (2011)
  • 批准号:
    1101595
  • 财政年份:
    2011
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
  • 批准号:
    1007383
  • 财政年份:
    2010
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Low-Dimensional Geometric Variational Problems
Teichmuller 理论和低维几何变分问题
  • 批准号:
    0505603
  • 财政年份:
    2005
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Vertical Integration of Research and Education in the Mathematical Sciences
数学科学研究与教育的垂直整合
  • 批准号:
    0240058
  • 财政年份:
    2003
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
RUI: Halogens in Granitic Systems
RUI:花岗岩系统中的卤素
  • 批准号:
    9902185
  • 财政年份:
    1999
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Geometric Variational Problems
Teichmuller 理论和几何变分问题
  • 批准号:
    9971563
  • 财政年份:
    1999
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了