Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
基本信息
- 批准号:2001095
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides partial participant support of the conference "Recent Developments on Geometric Measure Theory and its Applications", to be held at Rice University (Houston, Texas) on 19-21 March 2020. A common tendency of both nature and human engineering is to seek maximum efficiency in solving a problem. Nature will design a leaf to catch the sun and transport nutrients, subject to the constraining influence of the location of the plant; a soap film will use the least amount of material to span a boundary; humans will design a road system to most efficiently move people and goods from place to place. The study of what the optimal shapes are for natural and artificial design problems has been a focus of increasingly sophisticated study by mathematicians for centuries, involving techniques from the foundations of calculus, geometry and partial differential equations. In the past few years, there have been breakthroughs in a number of disparate areas of this subject, but few conferences in the United States that bring together experts from across the range of the subject to meet and exchange perspectives in a single meeting. This conference aims for such a mixture of ideas.We list a number of areas where there has been deep recent progress. First, there have been important developments in the basics of geometric measure theory in general metric spaces, both finite and infinite dimensional. There has also been enormous progress in geometrical variational problems, both in a number of areas of regularity theory and in minimax theory for minimal hypersurfaces. We also see deep results in the structure of nodal sets, mean curvature flows and in harmonic measure. Further details are available at https://math.rice.edu/NewsEvents/Conferences/BobHardtGMTConference/index.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项提供了部分参与者支持会议“几何测量理论及其应用的最新发展”,将于2020年3月19日至21日在莱斯大学(德克萨斯州休斯顿)举行。自然界和人类工程学的一个共同趋势是在解决问题时寻求最大效率。大自然会设计一片叶子来捕捉阳光和运输养分,但要受到植物位置的限制;肥皂膜将使用最少的材料来跨越边界;人类将设计一个道路系统,以最有效地将人员和货物从一个地方运送到另一个地方。 几个世纪以来,研究自然和人工设计问题的最佳形状一直是数学家日益复杂的研究焦点,涉及微积分,几何和偏微分方程的基础技术。 在过去几年中,在这一主题的一些不同领域取得了突破,但在美国,很少有会议将来自该主题各个领域的专家聚集在一起,在一次会议上交流观点。 本次会议的目的就是要集思广益,我们列出了一些最近取得重大进展的领域。首先,在一般度量空间(包括有限维和无限维)中,几何测度理论的基础有了重要的发展。在几何变分问题上也有了巨大的进展,包括正则性理论的一些领域和极小超曲面的极大极小理论。我们也看到了节点集的结构,平均曲率流和调和测度的深刻结果。更多细节可在www.example.com上获得https://math.rice.edu/NewsEvents/Conferences/BobHardtGMTConference/index.html.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Wolf其他文献
An embedded genus-one helicoid.
嵌入的一属螺旋面。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:11.1
- 作者:
Matthias J. Weber;D. Hoffman;Michael Wolf - 通讯作者:
Michael Wolf
The plumbing of minimal area surfaces
最小面积表面的管道
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Michael Wolf;B. Zwiebach - 通讯作者:
B. Zwiebach
Limits in ?ℳℱ of Teichmüller geodesics
Teichmüller 测地线 ?ℳℱ 的极限
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
J. Chaika;H. Masur;Michael Wolf - 通讯作者:
Michael Wolf
Multifocal Cholesteatoma of the External Auditory Canal following Blast Injury
爆炸伤后外耳道多灶性胆脂瘤
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael Wolf;Lela Megirov;J. Kronenberg - 通讯作者:
J. Kronenberg
EARLY EXTUBATION FOLLOWING INFANT HEART SURGERY
- DOI:
10.1016/s0735-1097(13)60500-8 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
William T. Mahle;Nikhil Chanani;Michael Wolf - 通讯作者:
Michael Wolf
Michael Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Wolf', 18)}}的其他基金
Geometric Variational Problems in Classical and Higher Rank Teichmuller theory
经典和高阶Teichmuller理论中的几何变分问题
- 批准号:
2005551 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Creating technical leaders from early collegians of exceptional promise: a comprehensive program for demolishing barriers to persistence.
从具有杰出前途的早期大学生中培养技术领导者:消除持久障碍的综合计划。
- 批准号:
1565032 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures of Higher Teichmuller Spaces
FRG:合作研究:高等Teichmuller空间的几何结构
- 批准号:
1564374 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
The Fifth Ahlfors-Bers Colloquium (2011)
第五届 Ahlfors-Bers 研讨会 (2011)
- 批准号:
1101595 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
- 批准号:
1007383 - 财政年份:2010
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Teichmuller Theory and Low-Dimensional Geometric Variational Problems
Teichmuller 理论和低维几何变分问题
- 批准号:
0505603 - 财政年份:2005
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Vertical Integration of Research and Education in the Mathematical Sciences
数学科学研究与教育的垂直整合
- 批准号:
0240058 - 财政年份:2003
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Minimal Surfaces, Moduli Spaces, and Computation
合作研究:FRG:最小曲面、模空间和计算
- 批准号:
0139887 - 财政年份:2002
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Teichmuller Theory and Geometric Variational Problems
Teichmuller 理论和几何变分问题
- 批准号:
9971563 - 财政年份:1999
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
相似海外基金
Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
- 批准号:
10064693 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
- 批准号:
23H01264 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
- 批准号:
23H01944 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
- 批准号:
23K17404 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
- 批准号:
23K01343 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)