Local Theory of Operator Spaces and Applications
算子空间局部理论及应用
基本信息
- 批准号:0140067
- 负责人:
- 金额:$ 15.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-01 至 2006-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractRuanThe operator space theory is a natural quantization of functional analysis. The major difference between operator spaces and Banach spaces is that one must consider operator matrix norms and completely bounded maps in the category of operator spaces. This was first realized by William Arveson in 1969 and was characterized by the PI in his Ph.D thesis in 1987. Since then the theory has been quickly developed into a very exciting research area in modern analysis. This remarkable development is mainly due to the contributions of D.Blecher, E.Christensen, E.Effros, M.Junge, E.Kirchberg, C.Le Merdy, G.Pisier, V.Paulsen, H.Rosenthal, R.Smith, A.Sinclair and the PI. Recently, the PI's research has been mainly centered on the 'local theory' of operator spaces and their applications. One of his main goals is to find the appropriate quantization of classical results in Banach space theory, and to apply these results to C*-algebras and von Neumann algebras, as well as to some other related areas such as non-commutative harmonic analysis and locally compact quantum groups. In this proposal, the PI plans to continue his investigation in this direction and proposes the following four research projects. (1) Investigate the local properties of non-commutative Lp spaces and their applications to operator algebras. (2) Investigate the local structure of the operator preduals of von Neumann algebras and the operator duals of C*-algebras. (3) Investigate the further applications of operator spaces to Kac algebras and locally compact quantum groups. (4) Investigate the geometric structure of the 'matrix unit balls' of operator spaces, and investigate the possible applications of operator spaces to non-commutative probability and free probability.The most profound distinction between classical and quantum mechanics is Heisenberg's principle that one should represent the basic variables of physics by operators rather than functions. The work of J. von Neumann emphasized that it is important to pursue the 'quantized' forms of mathematics. Collaborating with F.J. Murray, von Neumann succeeded in quantizing integration theory during the 1940's. Since then, mathematicians have tried to quantize many other areas of mathematics such as topology, differential geometry, analysis and probability theory. The theory of operator spaces is a natural quantization of functional analysis, which is a very important field in modern analysis. During the last fifteen years, the PI together with his colleagues has established the foundation of operator space theory and has also discovered a number of far-reaching applications to some related areas in mathematics. In this proposal, he plans to continue his work on operator spaces and their applications. He expects that the solutions the proposed research projects will make important contributions to related fields.
摘要 阮算子空间理论是泛函分析的自然量化。算子空间和 Banach 空间的主要区别在于,必须考虑算子空间范畴内的算子矩阵范数和完全有界映射。这首先由 William Arveson 于 1969 年实现,并在 1987 年的博士论文中以 PI 为特征。此后,该理论迅速发展成为现代分析中一个非常令人兴奋的研究领域。 这一显着的发展主要归功于 D.Blecher、E.Christensen、E.Effros、M.Junge、E.Kirchberg、C.Le Merdy、G.Pisier、V.Paulsen、H.Rosenthal、R.Smith、A.Sinclair 和 PI 的贡献。 最近,PI的研究主要集中在算子空间的“局部理论”及其应用上。他的主要目标之一是找到巴拿赫空间理论中经典结果的适当量化,并将这些结果应用于 C* 代数和冯诺依曼代数,以及其他一些相关领域,例如非交换调和分析和局部紧量子群。 在本提案中,PI计划继续在这个方向进行研究,并提出以下四个研究项目。 (1) 研究非交换 Lp 空间的局部性质及其在算子代数中的应用。 (2) 研究冯诺依曼代数算子预对数和C*-代数算子对偶的局部结构。 (3) 研究算子空间在Kac代数和局部紧量子群中的进一步应用。 (4)研究算子空间“矩阵单位球”的几何结构,研究算子空间在非交换概率和自由概率中的可能应用。经典力学和量子力学最深刻的区别是海森堡原理,即应该用算子而不是函数来表示物理学的基本变量。 J. von Neumann 的工作强调追求数学的“量化”形式非常重要。 20 世纪 40 年代,冯·诺依曼与 F.J. Murray 合作,成功地量化了积分理论。从那时起,数学家们尝试量化许多其他数学领域,例如拓扑、微分几何、分析和概率论。 算子空间理论是泛函分析的自然量化,是现代分析中一个非常重要的领域。在过去的十五年里,PI与他的同事一起建立了算子空间理论的基础,并在数学的一些相关领域发现了许多深远的应用。在这项提案中,他计划继续他在操作空间及其应用方面的工作。他预计所提出的研究项目的解决方案将为相关领域做出重要贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhong-Jin Ruan其他文献
On exotic group C*-algebras
- DOI:
10.1016/j.jfa.2016.03.002 - 发表时间:
2016-07-15 - 期刊:
- 影响因子:
- 作者:
Zhong-Jin Ruan;Matthew Wiersma - 通讯作者:
Matthew Wiersma
On ?ℒ∞ structures of nuclear C * -algebras
- DOI:
10.1007/s00208-002-0384-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Junge;Narutaka Ozawa;Zhong-Jin Ruan - 通讯作者:
Zhong-Jin Ruan
Zhong-Jin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhong-Jin Ruan', 18)}}的其他基金
Wabash Seminar and Miniconference
Wabash 研讨会和小型会议
- 批准号:
1501073 - 财政年份:2015
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
Wabash Seminar and Miniconference
Wabash 研讨会和小型会议
- 批准号:
1200801 - 财政年份:2012
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Operator Spaces and Locally Compact Quantum Groups
算子空间和局部紧量子群
- 批准号:
0901395 - 财政年份:2009
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
Wabash Seminar and Miniconference, 2009 - 2011
Wabash 研讨会和小型会议,2009 - 2011
- 批准号:
0907768 - 财政年份:2009
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Operator Spaces and Applications to Related Areas
操作员空间和相关领域的应用
- 批准号:
0500535 - 财政年份:2005
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
Operator Spaces and Their Applications
算子空间及其应用
- 批准号:
9877157 - 财政年份:1999
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Spaces and Amenabilities
数学科学:算子空间和便利性
- 批准号:
9600077 - 财政年份:1996
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
Mathematical Sciences: A workshop on Quantum Groups and Their Connections with Quantized Functional Analysis
数学科学:量子群及其与量化泛函分析的联系研讨会
- 批准号:
9500691 - 财政年份:1995
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Spaces and Operator Algebras
数学科学:算子空间和算子代数
- 批准号:
9302989 - 财政年份:1993
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Spaces, Operator Algebras and Completely Bounded Maps
数学科学:算子空间、算子代数和全有界图
- 批准号:
9102109 - 财政年份:1991
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: 2024 Great Plains Operator Theory Symposium
会议:2024年大平原算子理论研讨会
- 批准号:
2400046 - 财政年份:2024
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Conference: Virginia Operator Theory and Complex Analysis Meeting
会议:弗吉尼亚算子理论与复分析会议
- 批准号:
2327592 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Conference: 2023 Great Plains Operator Theory Symposium
会议:2023年大平原算子理论研讨会
- 批准号:
2247732 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant