Operator Spaces and Their Applications

算子空间及其应用

基本信息

  • 批准号:
    9877157
  • 负责人:
  • 金额:
    $ 11.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-05-15 至 2003-04-30
  • 项目状态:
    已结题

项目摘要

AbstractRuanAn operator space is a norm closed subspace of bounded linear operators on a Hilbert space, equipped with a distinguished matrix norm. The operator space theory is a natural quantization of Banach space theory. The major difference between operator spaces and Banach spaces is that one considers operator matrix norms and completely bounded maps in the category of operator spaces. In 1987, the PI succeeded in formulating an axiomatization of operator spaces by matrix norms. Since then, a lot of progress has been made in this area. In this proposal, the PI plans to continue his research in this direction and proposes the following research topics:(1) investigate the local structure of the operator preduals of von Neumann algebras and the operator duals of $C^*$-algebras; (2) investigate the local structure on $C^*$-algebras and von Neumann algebras; (3) investigate the geometric structure of matrix unit balls of operator spaces;(4) investigate the application to locally compact quantum groups.The most profound distinction between classical and quantum mechanics is Heisenberg's principle that one must represent the basic variables of physics by operators rather than functions. The work of J. von Neumann emphasized that it is important to pursue the "quantized" forms of mathematics. Collaborating with F.J. Murray, von Neumann succeeded in quantizing integration theory during the 1940's. Since then, mathematicians have tried to quantize many other areas of mathematics such as topology, differential geometry, analysis and probability theory. The theory of operator spaces is a natural quantization of functional analysis, or more precisely, a natural quantization of Banach space theory. This is a recently developed promising research area in modern analysis. The PI and his colleagues have established the foundation of this area. They have also discovered some far-reaching applications of operator space theory to related areas in mathematics such as operator algebras, non-commutative harmonic analysis, Kac algebras and locally compact quantum groups. The PI plans to continue his research in this direction and plans to explore a much broarder range of applications.
算子空间是Hilbert空间上有界线性算子的范数闭子空间,具有特殊的矩阵范数。 算子空间理论是Banach空间理论的自然量子化。 算子空间与Banach空间的主要区别在于,算子空间范畴中考虑了算子矩阵范数和完全有界映射。在1987年,PI成功地用矩阵范数来表述算子空间的公理化。 自那时以来,在这一领域取得了很大进展。 在这一建议中,PI计划继续在这一方向上开展研究,并提出了以下研究课题:(1)研究von Neumann代数的算子预构和$C^*$-代数的算子预构的局部结构;(2)研究$C^*$-代数和von Neumann代数的局部结构;(3)研究算子空间的矩阵单位球的几何结构;(4)研究它在局部紧量子群中的应用经典力学和量子力学之间最深刻的区别是海森堡的原理,即必须用算符而不是函数来表示物理学的基本变量。冯·诺依曼的工作强调了追求数学的“量子化”形式的重要性。 冯·诺依曼与F. J.默里合作,在20世纪40年代成功地量化了积分理论。 从那时起,数学家们试图探索数学的许多其他领域,如拓扑学,微分几何,分析和概率论。 算子空间理论是泛函分析的自然量子化,或者更准确地说,是Banach空间理论的自然量子化。 这是现代分析中最近发展起来的一个很有前途的研究领域。 PI和他的同事们已经建立了这个领域的基础。 他们还发现了算子空间理论在数学相关领域的一些深远应用,如算子代数,非交换调和分析,Kac代数和局部紧量子群。 PI计划继续在这个方向上进行研究,并计划探索更广泛的应用范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhong-Jin Ruan其他文献

On exotic group C*-algebras
  • DOI:
    10.1016/j.jfa.2016.03.002
  • 发表时间:
    2016-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Zhong-Jin Ruan;Matthew Wiersma
  • 通讯作者:
    Matthew Wiersma
On ?ℒ∞ structures of nuclear C * -algebras
  • DOI:
    10.1007/s00208-002-0384-7
  • 发表时间:
    2003-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Marius Junge;Narutaka Ozawa;Zhong-Jin Ruan
  • 通讯作者:
    Zhong-Jin Ruan

Zhong-Jin Ruan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhong-Jin Ruan', 18)}}的其他基金

Wabash Seminar and Miniconference
Wabash 研讨会和小型会议
  • 批准号:
    1501073
  • 财政年份:
    2015
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
Wabash Seminar and Miniconference
Wabash 研讨会和小型会议
  • 批准号:
    1200801
  • 财政年份:
    2012
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Wabash Seminar and Miniconference, 2009 - 2011
Wabash 研讨会和小型会议,2009 - 2011
  • 批准号:
    0907768
  • 财政年份:
    2009
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Operator Spaces and Locally Compact Quantum Groups
算子空间和局部紧量子群
  • 批准号:
    0901395
  • 财政年份:
    2009
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
Operator Spaces and Applications to Related Areas
操作员空间和相关领域的应用
  • 批准号:
    0500535
  • 财政年份:
    2005
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
Local Theory of Operator Spaces and Applications
算子空间局部理论及应用
  • 批准号:
    0140067
  • 财政年份:
    2002
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Operator Spaces and Amenabilities
数学科学:算子空间和便利性
  • 批准号:
    9600077
  • 财政年份:
    1996
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: A workshop on Quantum Groups and Their Connections with Quantized Functional Analysis
数学科学:量子群及其与量化泛函分析的联系研讨会
  • 批准号:
    9500691
  • 财政年份:
    1995
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Operator Spaces and Operator Algebras
数学科学:算子空间和算子代数
  • 批准号:
    9302989
  • 财政年份:
    1993
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Operator Spaces, Operator Algebras and Completely Bounded Maps
数学科学:算子空间、算子代数和全有界图
  • 批准号:
    9102109
  • 财政年份:
    1991
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Continuing Grant

相似海外基金

The Higman-Thompson groups, their generalisations, and automorphisms of shift spaces
希格曼-汤普森群、它们的概括以及移位空间的自同构
  • 批准号:
    EP/X02606X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Fellowship
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
  • 批准号:
    23K03164
  • 财政年份:
    2023
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the autonomous management and their public benefits of privately owned green spaces in urban areas
城市私有绿地自主管理及其公共效益研究
  • 批准号:
    23K13462
  • 财政年份:
    2023
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
  • 批准号:
    RGPIN-2018-04534
  • 财政年份:
    2022
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Discovery Grants Program - Individual
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
  • 批准号:
    RGPIN-2022-05387
  • 财政年份:
    2022
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2022
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
  • 批准号:
    22K18669
  • 财政年份:
    2022
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2021
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Discovery Grants Program - Individual
Sobolev-Orlicz embedding theorems for Dirichlet spaces and their probabilistic interpretation
Dirichlet 空间的 Sobolev-Orlicz 嵌入定理及其概率解释
  • 批准号:
    21K20326
  • 财政年份:
    2021
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了