Rigidity Phenomena for Higher Rank Abelian Actions
高阶阿贝尔动作的刚性现象
基本信息
- 批准号:0140513
- 负责人:
- 金额:$ 8.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2004-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: DMS-0140513PI: Boris KalininABSTRACTThe proposed research lies at the area of smooth dynamicalsystems and ergodic theory. The main goal of the project isto investigate "higher rank" dynamical systems. Inparticular, the investigator will study actions of discreteand continuous higher rank abelian groups, which are naturalgeneralizations of diffeomorphisms and flows on smoothmanifolds. Higher rank dynamical systems appear naturally inthe study of various geometric and algebraic objects. Theprime examples of these systems include hyperbolic andpartially hyperbolic actions by automorphisms andtranslations on compact cosets of Lie groups. Using dynamical,analytic, and group theoretic methods the investigatorwill study rigidity properties of such systems. The examplesof possible rigidity properties include description ofinvariant measures, regularity of measurable isomorphisms,and existence of smooth isomorphisms to the algebraic models.Dynamical systems and ergodic theory is a relatively new fieldof mathematics which studies the evolution of physical andmathematical systems over time, for example planet systems,air and fluid flows. This field originated from the classicalstudies in differential equations and celestial mechanics.Dynamics and ergodic theory introduced new mathematical toolsinto these areas of physics and mechanics, such as the studyof the qualitative behavior in the long run as well as variousanalytic and probabilistic methods. New ideas and concepts indynamics, such as fractals and chaos, have not only affectedthe field itself dramatically, but also fundamentally changedour understanding of the world. The influence of the studiesin dynamical systems nowadays goes as far as meteorology, biology, and computer science.
提案编号:DMS-0140513 PI:Boris Kalinin摘要建议的研究领域是光滑动力系统和遍历理论。该项目的主要目标是研究“高阶”动力系统。特别是,研究者将研究离散和连续高阶阿贝尔群的作用,这些阿贝尔群是光滑流形上的自同态和流的自然推广。高阶动力系统自然地出现在各种几何和代数对象的研究中。这些系统的主要例子包括李群紧陪集上的自同构和平移的双曲和部分双曲作用。利用动力学、解析和群论的方法,该系统将研究这类系统的刚性特性。可能的刚性性质的例子包括不变测度的描述,可测同构的正则性,以及代数模型的光滑同构的存在性。动力系统和遍历理论是一个相对较新的数学领域,它研究物理和数学系统随时间的演化,例如行星系统,空气和流体流动。这一领域起源于微分方程和天体力学的经典研究,动力学和遍历理论将新的数学工具引入到物理和力学的这些领域,如长期定性行为的研究以及各种分析和概率方法。动力学中的新思想和概念,如分形和混沌,不仅极大地影响了该领域本身,而且从根本上改变了我们对世界的理解。当今动力系统研究的影响已扩展到气象学、生物学和计算机科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boris Kalinin其他文献
Boris Kalinin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boris Kalinin', 18)}}的其他基金
RUI: Cocycles and rigidity for hyperbolic systems and actions
RUI:双曲系统和作用的余循环和刚度
- 批准号:
1101150 - 财政年份:2011
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Measure rigidity and smooth rigidity of abelian actions
测量阿贝尔动作的刚度和平滑刚度
- 批准号:
0701292 - 财政年份:2007
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Rigidity Phenomena for Higher Rank Abelian Actions
高阶阿贝尔动作的刚性现象
- 批准号:
0411769 - 财政年份:2003
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
相似海外基金
The dawn of modular phenomena for higher level multiple zeta values with a new development on multiple Eisenstein series
随着多个爱森斯坦级数的新发展,更高水平的多个 zeta 值的模块化现象的曙光
- 批准号:
23K03034 - 财政年份:2023
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of saccade-like image shifts on retinal processing: Phenomena, mechanisms, and relation to visual processing in higher brain centers
眼跳样图像移动对视网膜处理的影响:现象、机制以及与高级大脑中心视觉处理的关系
- 批准号:
355457424 - 财政年份:2017
- 资助金额:
$ 8.17万 - 项目类别:
Research Grants
A Deeper Understanding of Small-Scale Phenomena in Heat Pipes through a Higher Order Lattice Boltzmann Method
通过高阶格子玻尔兹曼方法更深入地了解热管中的小尺度现象
- 批准号:
1644426 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Higher Order Numerical Methods and Their Numerical Analysis for Mathematical Models of Taxis Phenomena
出租车现象数学模型的高阶数值方法及其数值分析
- 批准号:
15K04987 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rigidity Phenomena of Higher Rank Actions
高阶动作的刚性现象
- 批准号:
1501095 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
Continuing Grant
Elucidation of phenomena in the higher dimensional domain applying the reduced system and construction of the mathematical method
应用简化系统和数学方法的构建来阐明高维域中的现象
- 批准号:
26400173 - 财政年份:2014
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Deeper Understanding of Small-Scale Phenomena in Heat Pipes through a Higher Order Lattice Boltzmann Method
通过高阶格子玻尔兹曼方法更深入地了解热管中的小尺度现象
- 批准号:
1233106 - 财政年份:2012
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
A search for the antisense transcripts that affect higher-order life phenomena in nematodes
寻找影响线虫高阶生命现象的反义转录本
- 批准号:
24657121 - 财政年份:2012
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research