A Deeper Understanding of Small-Scale Phenomena in Heat Pipes through a Higher Order Lattice Boltzmann Method
通过高阶格子玻尔兹曼方法更深入地了解热管中的小尺度现象
基本信息
- 批准号:1644426
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-14 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1233106PI: SchaeferHeat pipes are compact, reliable devices used for transporting heat, but there is a lack of understanding of their microscale fluid flow behavior. In order to gain deeper insights into the nature of these types of flows, which also often occur in complicated geometries, we will model the flows using a technique known as the lattice Boltzmann method. While that method is very useful in analyzing complicated flows, it still suffers from inadequate development on the inclusion of thermal effects. Therefore, we propose the development of advanced, higher order (more accurate) lattice Boltzmann-based numerical simulations that can further our knowledge of micro thermal-fluid phenomena in heat pipes. The intellectual merit of the proposed work comes both from developing a more rigorous, realistic, and versatile computational tool, and from the deeper understanding of complex flows that can be gained as a result. The fundamental underpinning of all lattice Boltzmann models are particle distribution functions that describe the density and momentum (and sometimes temperature) of the fluid elements. To develop a higher-order thermal lattice Boltzmann model, we will expand the equilibrium particle distribution function to the fourth order. In order to model multiple phases, we will incorporate fluid particle interactions using a better description of the effective mass. Combining these approaches means that the forces acting on the particles will need to be discretized over a large number of velocities, which is numerically complicated. However, while this is quite challenging, it will likely lead to additional insights into the contribution of the various aspects of the lattice Boltzmann formulation to instabilities and inaccuracies in the numerical simulations, thereby expanding the applicability of the lattice Boltzmann method. The model will be validated using the vast range of experimental data available in the literature. The resulting model will then be able to explore the effect of variations in geometry, fluid properties, etc., on heat pipe efficiency, and will lead to a better understanding of the underlying physics of the micro fluid phenomena that drive heat pipe systems.More accurate simulations of multiphase, multicomponent, thermal flows, particularly in small-scale and/or complicated geometries have many applications. Improving heat pipe performance can lead to increases in the overall energy efficiency of computer cooling systems, which currently consume huge amounts of power (a typical data center uses 1/3 of its energy consumption for cooling). The same is true for many other more conventional heat exchangers in the power generating and HVAC&R industries; it may be possible to design more efficient condensers, evaporators, generators, etc., by combining micromanufacturing processes with accurate simulations of the phase transitions that occur in those channels and surfaces. Improving the energy efficiency can directly lead to both economic and environmental savings. There are also educational benefits from the study of heat pipes. The devices will be used as demonstration units for undergraduate classes, in order to provide an impetus for discussion of phase change and heat transfer phenomena. Design teams of upper-level undergraduates will also help to translate heat pipe concepts (and their underlying principles) to the high-school and middle-school level, through designing and building demonstration units that examine different materials, working fluids, and configurations, as well as applications for heat pipes, such as cooling devices for overclocking processors and the creation of heat pipe boats.
CBET-1233106 PI:SchaeferHeat pipes是用于传输热量的紧凑,可靠的设备,但对其微尺度流体流动行为缺乏了解。为了更深入地了解这些类型的流动的性质,这些流动也经常发生在复杂的几何形状中,我们将使用一种称为格子玻尔兹曼方法的技术来模拟流动。虽然该方法在分析复杂流动时非常有用,但它在包含热效应方面的发展仍然不足。因此,我们建议发展先进的,更高阶(更准确)的格子玻尔兹曼为基础的数值模拟,可以进一步我们的知识,在热管中的微观热流体现象。所提出的工作的智力价值来自开发一个更严格的,现实的,和多功能的计算工具,并从复杂的流动,可以获得更深入的理解。所有格子玻尔兹曼模型的基础是描述流体元素的密度和动量(有时还有温度)的粒子分布函数。为了发展一个高阶的热晶格玻尔兹曼模型,我们将平衡粒子分布函数扩展到四阶。为了模拟多个阶段,我们将纳入流体粒子的相互作用,使用更好的描述的有效质量。结合这些方法意味着作用在颗粒上的力需要在大量的速度上离散化,这在数值上是复杂的。然而,虽然这是相当具有挑战性的,它可能会导致额外的见解的格子玻尔兹曼公式的各个方面的贡献,在数值模拟中的不稳定性和不准确性,从而扩大格子玻尔兹曼方法的适用性。该模型将使用文献中的大量实验数据进行验证。然后,所得到的模型将能够探索几何形状、流体性质等变化的影响,更精确地模拟多相、多组分的热流,特别是在小尺度和/或复杂的几何形状中,具有许多应用。提高热管性能可以提高计算机冷却系统的整体能效,目前计算机冷却系统消耗大量电力(典型的数据中心将其能耗的1/3用于冷却)。对于发电和HVAC R行业中的许多其他更传统的热交换器也是如此;可以设计更有效的冷凝器、蒸发器、发电机等,通过将微制造过程与发生在这些通道和表面中的相变的精确模拟相结合。提高能源效率可以直接导致经济和环境节约。热管的研究也有教育上的好处。这些设备将被用作本科课程的演示单元,以便为相变和传热现象的讨论提供动力。高年级本科生的设计团队还将帮助将热管概念(及其基本原理)转化为高中和初中水平,通过设计和建造演示单元来检查不同的材料,工作流体和配置,以及热管的应用,例如超频处理器的冷却设备和热管船的创建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Schaefer其他文献
Modern deep neural networks for Direct Normal Irradiance forecasting: A classification approach
- DOI:
10.1016/j.prime.2024.100853 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Muhammad Saud Ul Hassan;Kashif Liaqat;Laura Schaefer;Alexander J. Zolan - 通讯作者:
Alexander J. Zolan
A steamy proposal for Martian clays
火星黏土的热烈提议
- DOI:
10.1038/d41586-017-07661-3 - 发表时间:
2017-12-06 - 期刊:
- 影响因子:48.500
- 作者:
Laura Schaefer - 通讯作者:
Laura Schaefer
Individualized Positive End-expiratory Pressure Titration Strategies in Superobese Patients Undergoing Laparoscopic Surgery: Prospective and Nonrandomized Crossover Study
接受腹腔镜手术的超级肥胖患者的个体化呼气末正压滴定策略:前瞻性和非随机交叉研究
- DOI:
10.1097/aln.0000000000004631 - 发表时间:
2023 - 期刊:
- 影响因子:8.8
- 作者:
Christoph Boesing;Laura Schaefer;Marvin Hammel;M. Otto;S. Blank;P. Pelosi;P. Rocco;T. Luecke;Joerg Krebs - 通讯作者:
Joerg Krebs
Low-Grade heat utilization: Techno-Economic assessment of a hybrid COsub2/sub heat pump and Organic Rankine Cycle system integrated with photovoltaics and thermal storage
低品位热利用:混合二氧化碳热泵与有机朗肯循环系统结合光伏和蓄热的技术经济评估
- DOI:
10.1016/j.applthermaleng.2025.125959 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.900
- 作者:
Kashif Liaqat;Shima Soleimani;Laura Schaefer - 通讯作者:
Laura Schaefer
Implementation of mentalization-based treatment in a day hospital program for eating disorders-A pilot study.
在日间医院项目中实施基于心理化的饮食失调治疗——一项试点研究。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
A. Zeeck;Katharina Endorf;S. Euler;Laura Schaefer;Inga Lau;Kristina Flösser;Valeria Geiger;A. F. Meier;Peter Walcher;C. Lahmann;A. Hartmann - 通讯作者:
A. Hartmann
Laura Schaefer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Schaefer', 18)}}的其他基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2223078 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Workshop Series on Thermal Issues in Climate Change
气候变化中的热问题研讨会系列
- 批准号:
2137067 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
A Deeper Understanding of Small-Scale Phenomena in Heat Pipes through a Higher Order Lattice Boltzmann Method
通过高阶格子玻尔兹曼方法更深入地了解热管中的小尺度现象
- 批准号:
1233106 - 财政年份:2012
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Environmentally Sound: High Performance, Compact Thermoacoustic Refrigeration
无害环境:高性能、紧凑型热声制冷
- 批准号:
0729905 - 财政年份:2007
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
IGERT: Sustainability Initiative in Engineering
IGERT:工程可持续发展倡议
- 批准号:
0504345 - 财政年份:2005
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
CAREER: Microscale Two-Phase Zeotropic Flow in Energy Systems
职业:能源系统中的微尺度两相非共沸流
- 批准号:
0238841 - 财政年份:2003
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
CAREER: Understanding the Dynamic Mechanical Adaptations of Bone Tissue at Small Length Scales
职业:了解小长度尺度下骨组织的动态机械适应
- 批准号:
2339836 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
- 批准号:
2426592 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Understanding prokaryotic small proteins from context
从背景理解原核小蛋白
- 批准号:
FT230100724 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
ARC Future Fellowships
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
- 批准号:
2316720 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
- 批准号:
2401775 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2342618 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
- 批准号:
2326685 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant














{{item.name}}会员




