RUI: Determinant Identities, Szego Type Limit Theorems, and Connections to Random Matrices
RUI:行列式恒等式、Szego 类型极限定理以及与随机矩阵的连接
基本信息
- 批准号:0200167
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Determinants of Toeplitz matrices have arisen in many branchesof mathematics and physics. For example, they describe thespin correlation between two sites in the classical Isingmodel of a two-dimensional magnet. More recently, they havebeen used to describe statistical properties of random matrices, whose eigenvalues model complicated systems. The asymptotic behavior of determinants of Toeplitz matricesis described using the Strong Szego-Limit Theorem and itsgeneralizations. Recently, this theorem was improved in thesense that a new identity was found for the determinant thatallows one to find very good estimates for the error in theSzego expansion of the determinant. The major purpose ofthis project is to extend this identity to other classes ofmatrices and operators. This has applications such as finding the distributions of linear statistics in random matrix theory,as well as finding the level spacing of the eigenvalues. Many physical systems possess such complicated behavior thatexact predictions become impossible, so instead averageproperties of these systems are studied. For example, theenergy level of a particle of a compound nucleus in a slownuclear reaction has complicated unpredictable behavior.Random matrix theory provides mathematical models that allowa simulation of the energy levels of the particle. One of the tools that is used to study the statistical behavior of the random matrices and thus of the energy levels, is a determinant of a Toeplitz matrix. A determinant is a number that yields important information about a square array of numbers. These Toeplitz determinants occur in manybranches of applied mathematics. One classical use was tostudy the properties of models of two-dimensional (or verythin) magnets. Determinants are often hard to compute.However, there is a result, called the Strong Szego LimitTheorem, which yields an estimate for such a determinant.Recently, this estimate was improved so that error termscould be calculated more easily. One major goal of theproject is to extend these results to other classes ofdeterminants. This will yield information about the energylevels of complicated systems in other types of models, not covered by the Toeplitz case.
Toeplitz矩阵的行列式在数学和物理学的许多分支中都有出现。例如,它们描述了二维磁体的经典伊辛模型中两个位置之间的自旋相关。最近,它们被用来描述随机矩阵的统计性质,其特征值模型复杂的系统。利用强极限定理及其推广描述了Toeplitz矩阵行列式的渐近性质。最近,这一定理得到了改进,在这个意义上,一个新的身份被发现的行列式,允许一个找到很好的估计误差在theSzego扩展的行列式。这个项目的主要目的是将这个恒等式推广到其他类型的矩阵和算子。这有应用,如发现在随机矩阵理论中的线性统计分布,以及发现的水平间距的特征值。许多物理系统具有如此复杂的行为,精确的预测变得不可能,因此研究这些系统的平均性质。例如,在慢核反应中,复合核粒子的能级具有复杂的不可预测的行为,随机矩阵理论提供了允许模拟粒子能级的数学模型。用于研究随机矩阵的统计行为以及能级的统计行为的工具之一是Toeplitz矩阵的行列式。行列式是一个数字,它产生关于一个正方形数组的重要信息。这些Toeplitz行列式出现在应用数学的许多分支中。一个经典的用途是研究二维(或超薄)磁体模型的性质。行列式通常很难计算,然而,有一个结果,称为强Szego极限定理,它给出了这样一个行列式的一个估计,最近,这个估计被改进了,以便更容易计算误差项。该项目的一个主要目标是将这些结果扩展到其他类别的决定因素。这将产生关于其他类型模型中复杂系统能级的信息,而Toeplitz案例没有涵盖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Estelle Basor其他文献
Estelle Basor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Estelle Basor', 18)}}的其他基金
RUI: Asymptotics of Determinants of Perturbations of Convolution Operators
RUI:卷积算子扰动行列式的渐近
- 批准号:
0500892 - 财政年份:2005
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
RUI: Applications of Operator Theory to Random Matrix Theory
RUI:算子理论在随机矩阵理论中的应用
- 批准号:
9970879 - 财政年份:1999
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Mathematical Sciences: Application of Operator Theory to Random Matrices and Random Variables
数学科学:算子理论在随机矩阵和随机变量中的应用
- 批准号:
9623278 - 财政年份:1996
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似海外基金
The early-life mycobiome as a determinant of oral tolerance to food allergens
生命早期的真菌组是食物过敏原口腔耐受性的决定因素
- 批准号:
498187 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Operating Grants
Early intervention as a determinant of hearing aid benefit for age-related hearing loss: Results from longitudinal cohort studies
早期干预是助听器对年龄相关性听力损失有益的决定因素:纵向队列研究的结果
- 批准号:
10749385 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
TMEM55B as a molecular determinant of NAFLD
TMEM55B 作为 NAFLD 的分子决定因素
- 批准号:
10913882 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Early Life Determinant of T1D Susceptibility
生命早期 T1D 易感性的决定因素
- 批准号:
489506 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Operating Grants
A mycovirus defective RNA encoding virulence determinant factor
编码毒力决定因子的真菌病毒RNA缺陷
- 批准号:
23K05239 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infectious history as a determinant of age-related inflammation in Alzheimers disease
感染史是阿尔茨海默病年龄相关炎症的决定因素
- 批准号:
10663042 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Quadriceps Muscle Quality: A Post-Injury Determinant of Knee Function and Health
股四头肌肌肉质量:膝关节功能和健康的损伤后决定因素
- 批准号:
10743396 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
A theoretical framework and mixed-methods investigation of documentation status as a social determinant of emergency care utilization in adult safety-net patients
文件状况作为成人安全网患者紧急护理利用的社会决定因素的理论框架和混合方法调查
- 批准号:
10617118 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Development of an Instrument for Assessment of Indigenous Historical Trauma as a Social Determinant of Health Among American Indian/Alaska Native Populations
开发一种评估土著历史创伤作为美洲印第安人/阿拉斯加原住民健康社会决定因素的工具
- 批准号:
10736011 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Proline residues are a key determinant for toxin entry into the host cytosol
脯氨酸残基是毒素进入宿主细胞质的关键决定因素
- 批准号:
10740431 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:














{{item.name}}会员




