RUI: Asymptotics of Determinants of Perturbations of Convolution Operators

RUI:卷积算子扰动行列式的渐近

基本信息

项目摘要

AbstractBasor The focus of this project is to investigate the asymptotics of determinants of perturbations of convolution operators. Our goal will be to extend the classical limit theorems to these operators, both for scalar and matrix-valued symbols, and for both smooth and singular symbols. For many of these operators, the constant term is the most difficult piece of the asymptotic expansion to describe. For matrix-valued symbols there are only a few cases where the constants can be explicitly described. In particular, we will investigate the asymptotics in the case of a perturbation of a Toeplitz determinant by a Hankel operator with possibly different symbol. Other classes of operators of interest are Wiener-Hopf plus Hankel operators and Bessel operators. Classical operator methods will be used to study these problems as well as newer developments. For example, using the BorodinGeronimo-Geronimo-Case identity to bridge between smooth and singular symbols has been highly successful.There is increasing interest in finding asymptotic expansions of determinants of convolution type operators because they have connections to many problems in mathematical physics, including the Ising model (a model of a two-dimensional (or very thin) magnets), the classical dimer model, the entanglement problem in spin chain model, random growth models, and to the general area of random matrix theory. In these physical problems one is often interested in the complicated, unpredictable behavior of the models. Often a quantity that describes some statistical property of a system can be reformulated as a determinant approximation problem. The physical systems give predictions as to the right form of the approximation and show that many of the answers should be quite universal. The universality is especially important since it shows that many complicated systems and models are actually quite similar. Hence the idea is not simply to prove theorems and then find applications for the theorems, but to use the ideas of mathematical physics to give predictions of the mathematics and then conversely, to use the mathematics to tell us something about physical systems.
本项目的重点是研究卷积算子扰动行列式的渐近性。我们的目标是将经典的极限定理扩展到这些算子,包括标量和矩阵值符号,以及光滑和奇异符号。对于这些算子中的许多算子,常数项是渐近展开式中最难描述的部分。对于矩阵值符号,只有少数情况下可以显式描述常数。特别地,我们将研究Toeplitz行列式的扰动的情况下,由一个Hankel算子与可能不同的符号。其他感兴趣的算子类是Wiener-Hopf加Hankel算子和Bessel算子。经典的运营商的方法将被用来研究这些问题,以及更新的发展。例如,使用BorodinGeronimo-Geronimo-Case恒等式在光滑符号和奇异符号之间架起了一座桥梁,这是非常成功的。人们对卷积型算子行列式的渐近展开越来越感兴趣,因为它们与数学物理中的许多问题有关,包括Ising模型(二维(或极薄)磁体的模型)、经典二聚体模型、自旋链模型中的纠缠问题、随机增长模型以及随机矩阵理论的一般领域。在这些物理问题中,人们往往对模型的复杂、不可预测的行为感兴趣。通常,描述系统的某些统计特性的量可以重新表述为行列式近似问题。物理系统给出了近似的正确形式的预言,并表明许多答案应该是相当普遍的。普适性尤其重要,因为它表明许多复杂的系统和模型实际上非常相似。因此,我们的想法不是简单地证明定理,然后找到定理的应用,而是使用数学物理的思想来给出数学的预测,然后反过来,使用数学来告诉我们一些关于物理系统的东西。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Estelle Basor其他文献

Estelle Basor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Estelle Basor', 18)}}的其他基金

RUI: Determinant Identities, Szego Type Limit Theorems, and Connections to Random Matrices
RUI:行列式恒等式、Szego 类型极限定理以及与随机矩阵的连接
  • 批准号:
    0200167
  • 财政年份:
    2002
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
RUI: Applications of Operator Theory to Random Matrix Theory
RUI:算子理论在随机矩阵理论中的应用
  • 批准号:
    9970879
  • 财政年份:
    1999
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Application of Operator Theory to Random Matrices and Random Variables
数学科学:算子理论在随机矩阵和随机变量中的应用
  • 批准号:
    9623278
  • 财政年份:
    1996
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
  • 批准号:
    2348566
  • 财政年份:
    2024
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
  • 批准号:
    2422900
  • 财政年份:
    2024
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Creating Hybrid Exponential Asymptotics for use with Computational Data
创建用于计算数据的混合指数渐近
  • 批准号:
    DP240101666
  • 财政年份:
    2024
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Discovery Projects
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
  • 批准号:
    EP/X024555/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Fellowship
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
  • 批准号:
    2246549
  • 财政年份:
    2023
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Discovery Early Career Researcher Award
Dynamical and Spatial Asymptotics of Large Disordered Systems
大型无序系统的动力学和空间渐进
  • 批准号:
    2246664
  • 财政年份:
    2023
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
  • 批准号:
    2204397
  • 财政年份:
    2022
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Asymptotics of Positive Temperature Models From Statistical Mechanics
统计力学正温度模型的渐进性
  • 批准号:
    2230262
  • 财政年份:
    2022
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Standard Grant
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
  • 批准号:
    2210827
  • 财政年份:
    2022
  • 资助金额:
    $ 11.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了