Representation Theoretical Methods in the Theory of Special Functions
特殊函数理论中的表示理论方法
基本信息
- 批准号:0200364
- 负责人:
- 金额:$ 14.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is on the Theory of Symmetric Functions and its applications to Representation Theory and Combinatorics. The connection between Representation Theory and the Theory of Symmetric Functions is provided by the Frobenius map which relates group characters to symmetric functions. Combinatorics plays a role in that multiplicities of irreducibles are often obtained by counting tableaux, paths, trees and a growing variety of newly emerging discrete structures. In the more than ten years since its discovery, the Macdonald basis has progressively emerged as a central element in these connections. For more than a decade of research in the Theory of Macdonald Polynomials, the investigator and M. Haiman have been led to a variety of conjectures in Representation Theory, Algebraic Geometry, Combinatorics and Symmetric Function Theory. Efforts in proving these conjectures have yielded fundamental facts and methods in each of these areas. More recently the investigator discovered a variety of summation formulas (PNAS V. 98 (April 2001) 4313-4316) which permitted the proof of the first significant positivity result in the Theory of Macdonald Polynomials. In joint work with J. Haglund the investigator proved a beautiful combinatorial formula (conjectured by J. Haglund) for a rational function which had come to be known as the $q,t$-Catalan. The investigator in collaboration with students and associates plans to use his recently discovered symmetric function identities for a direct attack of some of the conjectures that are still unresolved.The Theory of Symmetric Functions is a powerful symbolic manipulation tool. The reason for this is that non linear problems may often be linearized by the introduction of an infinite number of variables. Now it develops that the change of bases matrices of Symmetric Function Theory may be used to "mimic" the presence of infinities within a finite device, thereby permitting the linearization and solution of many a computational problem. Discoveries in the theory and applications of symmetric functions, should also turn out to be of significant impact in the various areas of mathematics in which symmetric function methods have been shown to be effective. This given, we can see how important it is to pursue investigations in the Theory of Symmetric functions that extend and deepen the computational power of the theory. This is the foremost goal of the present project.
本研究是关于对称函数理论及其在表示论和组合数学中的应用。 表示论和对称函数论之间的联系由Frobenius映射提供,该映射将群特征与对称函数联系起来。组合学的作用在于,不可约项的多重性通常通过计算表格、路径、树和越来越多的新出现的离散结构来获得。在发现麦克唐纳基后的十多年中,它逐渐成为这些联系的中心元素。 经过十多年对麦克唐纳多项式理论的研究,研究者和M。海曼在表示论、代数几何、组合数学和对称函数论等方面有着丰富的研究成果。在证明这些知识的努力中,已经在每一个领域产生了基本的事实和方法。 最近,研究人员发现了各种求和公式(PNAS V. 98(2001年4月)4313-4316),这些公式允许证明麦克唐纳多项式理论中的第一个重要的正结果。在联合工作与J. Haglund调查证明了一个美丽的组合公式(由J. Haglund)的合理功能已被称为$q,t$-加泰罗尼亚语。研究人员与学生和同事合作,计划使用他最近发现的对称函数恒等式直接攻击一些尚未解决的问题。对称函数理论是一个强大的符号操作工具。其原因是,非线性问题往往可以通过引入无限多的变量来线性化。现在它的发展,对称函数论的基矩阵的变化可以用来“模仿”有限设备内的无穷大的存在,从而允许线性化和许多计算问题的解决方案。在对称函数的理论和应用中的发现,也应该在对称函数方法被证明是有效的数学的各个领域产生重大影响。 鉴于此,我们可以看到在对称函数理论中进行调查是多么重要,这些调查扩展和深化了该理论的计算能力。 这是本项目的首要目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adriano Garsia其他文献
On surfaces with a rectilinear geodesic circle
- DOI:
10.1007/bf02412916 - 发表时间:
1958-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Adriano Garsia - 通讯作者:
Adriano Garsia
A Proof of the Delta Conjecture When $$\varvec{q=0}$$
- DOI:
10.1007/s00026-019-00426-x - 发表时间:
2019-05-03 - 期刊:
- 影响因子:0.700
- 作者:
Adriano Garsia;Jim Haglund;Jeffrey B. Remmel;Meesue Yoo - 通讯作者:
Meesue Yoo
Ansatz for $(-1)^{n-1}\nabla p_n$.
Ansatz 为 $(-1)^{n-1}
abla p_n$。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. D. Banerjee;M. Can;Adriano Garsia - 通讯作者:
Adriano Garsia
Adriano Garsia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adriano Garsia', 18)}}的其他基金
Representation Theoretical Methods in the Theory of Special Functions
特殊函数理论中的表示理论方法
- 批准号:
1700233 - 财政年份:2017
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Representation Theoretical Methods in the Theory of Special Function
特殊函数论中的表示理论方法
- 批准号:
1362160 - 财政年份:2014
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Representation Theoretical Methods in the Theory of Special Functions
特殊函数理论中的表示理论方法
- 批准号:
1068883 - 财政年份:2011
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Representation Theoretical Methods in the Theory of Special Functions
特殊函数理论中的表示理论方法
- 批准号:
0800273 - 财政年份:2008
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Representation Theoretical Methods in the Theory of Special Functions
特殊函数理论中的表示理论方法
- 批准号:
0500557 - 财政年份:2005
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Representation Theoretical Methods in the Theory of Special Functions
特殊函数理论中的表示理论方法
- 批准号:
9970709 - 财政年份:1999
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Representation Theoretical Methods in the Theory of Special Functions
数学科学:特殊函数论中的表示理论方法
- 批准号:
9532049 - 财政年份:1996
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial Aspects of Representation Theory & the Theory of Symmetric Functions
数学科学:表示论的组合方面
- 批准号:
9206960 - 财政年份:1992
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorial Aspects of Representation Theory and the Theory of Symmetric Functions
数学科学:表示论和对称函数理论的组合方面
- 批准号:
9006413 - 财政年份:1990
- 资助金额:
$ 14.01万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Equipment 1989
数学科学研究仪器1989
- 批准号:
8905623 - 财政年份:1989
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 14.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Utilization of theoretical calculations to the development of versatile detection methods of chemical warfare agents
利用理论计算开发化学战剂的多功能检测方法
- 批准号:
23K13526 - 财政年份:2023
- 资助金额:
$ 14.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A theoretical framework and mixed-methods investigation of documentation status as a social determinant of emergency care utilization in adult safety-net patients
文件状况作为成人安全网患者紧急护理利用的社会决定因素的理论框架和混合方法调查
- 批准号:
10617118 - 财政年份:2023
- 资助金额:
$ 14.01万 - 项目类别:
Development and In Vivo Validation of a Theoretical Framework and Practical Methods to Improve Safety and Efficacy of Neuromodulation Electrodes
提高神经调节电极安全性和有效性的理论框架和实用方法的开发和体内验证
- 批准号:
10572029 - 财政年份:2023
- 资助金额:
$ 14.01万 - 项目类别:
Exploring Response Properties of Molecules and Extended Systems Using Theoretical Methods
使用理论方法探索分子和扩展系统的响应特性
- 批准号:
2152633 - 财政年份:2022
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant
Graph Theoretical Methods for Blockchain Data Analysis
区块链数据分析的图论方法
- 批准号:
2139349 - 财政年份:2022
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
- 批准号:
2101012 - 财政年份:2021
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant
Quantum differential geometric methods in theoretical physics
理论物理中的量子微分几何方法
- 批准号:
2609634 - 财政年份:2021
- 资助金额:
$ 14.01万 - 项目类别:
Studentship
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2107934 - 财政年份:2021
- 资助金额:
$ 14.01万 - 项目类别:
Standard Grant