Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials

研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法

基本信息

  • 批准号:
    2101012
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Research Initiation Awards provide support for junior and mid-career faculty at Historically Black Colleges and Universities who are building new research programs or redirecting and rebuilding existing research programs. It is expected that the award helps to further the faculty member's research capability and effectiveness, improves research and teaching at the home institution, and involves undergraduate students in research experiences. Howard University’s award supports research that seeks to optimize the engineering of random composite materials that have electromagnetic (EM) capabilities. Such capabilities include EM interference shielding and EM observability enhancing, and/or EM sensing capabilities. This opens a wide range of applications in commercial and defense technologies, such as electrical/electronic devices, communication systems, oil and gas industries, and military and law enforcement. The macroscopic properties of composite materials depend on the geometry, distribution, volume fraction, and property of each constituent. While the numerical extraction techniques for the effective EM properties of periodically distributed composite materials are relatively well established and straightforward to implement, those for the randomly distributed composite materials have not been fully explored. The objective of this proposed research is to develop a rigorous theory and accurate and efficient numerical methods to provide the scale-dependent bounds of the effective EM properties of random composites in both static and dynamic cases. The proposed EM homogenization theory will be incorporated in the construction of an all-frequency stable formulation, which will be solved in Monte-Carlo simulations using finite element and domain decomposition methods. A stochastic simulation method will also be developed to characterize the material randomness and geometrical uncertainty and achieve an improved efficiency in the EM property retrieval. The proposed theories and methods will lead to the development of state-of-the-art homogenization tools for the characterization and analysis of random composite materials. This in turn would enable new design methodologies in random composites based on the theoretical guidance and computational support. The project includes an extensive education and outreach activities, including the involvement of students historically underrepresented in this field of research, and the development of video clips and demonstrations to disseminate the results to the public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究启动奖为历史上黑人学院和大学的初级和中级职业教师提供支持,他们正在建立新的研究项目或重新定向和重建现有的研究项目。预计该奖项将有助于进一步提高教师的研究能力和效率,改善家庭机构的研究和教学,并使本科生参与研究经验。 霍华德大学的奖项支持旨在优化具有电磁(EM)能力的随机复合材料工程的研究。 这样的能力包括EM干扰屏蔽和EM可观测性增强,和/或EM感测能力。这在商业和国防技术中开辟了广泛的应用,例如电气/电子设备,通信系统,石油和天然气工业以及军事和执法。复合材料的宏观性能取决于各组分的几何形状、分布、体积分数和性能。虽然周期性分布的复合材料的有效电磁特性的数值提取技术是相对完善的,简单的实施,那些随机分布的复合材料还没有得到充分的探讨。本研究的目的是发展一个严格的理论和准确,有效的数值方法,以提供随机复合材料的有效电磁性能的静态和动态的情况下的尺度相关的界限。所提出的EM均匀化理论将被纳入一个全频率稳定的配方,这将是解决蒙特-卡罗模拟使用有限元和区域分解方法的建设。一个随机模拟方法也将被开发来表征材料的随机性和几何不确定性,并实现在EM属性检索的效率提高。所提出的理论和方法将导致国家的最先进的均匀化工具的随机复合材料的表征和分析的发展。这反过来又将使新的设计方法在随机复合材料的理论指导和计算支持的基础上。该项目包括一个广泛的教育和推广活动,包括学生参与历史上在这一领域的研究,并开发视频剪辑和演示,以传播的结果给公众。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Pattern-Recognition-Based Mesh Refinement Method for the Moment Method Analysis of Electromagnetic Scattering Problems
An Eigen Decomposition Method for Finite Element Analysis of Electromagnetic Problems
电磁问题有限元分析的特征分解方法
A Continuous-Discontinuous Galerkin Method for the Modeling and Simulation of Electromagnetic Multiscale Problems
电磁多尺度问题建模与仿真的连续-间断伽辽金方法
An Automatic Mesh Refinement Method Based on Phase Extracted Basis Functions for Electromagnetic Scattering Analysis of Electrically Extra-Large Objects
一种基于相位提取基函数的电超大物体电磁散射分析的自动网格细化方法
A CONTINUOUS-DISCONTINUOUS GALERKIN METHOD FOR ELECTROMAGNETIC SIMULATIONS BASED ON AN ALL-FREQUENCY STABLE FORMULATION
基于全频稳定公式的连续-不连续伽略金电磁仿真方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Yan其他文献

Intracorporeal Mechanical Side-to-Side Isoperistaltic Anastomosis in Laparoscopic Right Hemicolectomy: The Best Choice? A Cohort Study
腹腔镜右半结肠切除术中的体内机械侧侧等蠕动吻合术:最佳选择?
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haoshuang Liu;Jingfeng Chen;Weihao Shao;Su Yan;S. Ding
  • 通讯作者:
    S. Ding
A neurodynamic approach to compute the generalized eigenvalues of symmetric positive matrix pair
计算对称正矩阵对广义特征值的神经动力学方法
  • DOI:
    10.1016/j.neucom.2019.06.016
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Jiqiang Feng;Su Yan;Sitian Qin;Wen Han
  • 通讯作者:
    Wen Han
An Advanced EM-Plasma Simulator Based on the DGTD Algorithm With Dynamic Adaptation and Multirate Time Integration Techniques
基于具有动态自适应和多速率时间积分技术的 DGTD 算法的先进电磁等离子体模拟器
Personal navigation method based on foot-mounted MEMS inertial/magnetic measurement unit
Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production
三维TiO2纳米管阵列与g-C3N4量子点相结合用于可见光驱动光催化制氢
  • DOI:
    10.1039/c7ra00039a
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhang Qi;Wang Hua;Chen Shuo;Su Yan;Quan Xie
  • 通讯作者:
    Quan Xie

Su Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Yan', 18)}}的其他基金

CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
  • 批准号:
    2238124
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Excellence in Research: Microwave-Assisted In-Situ Hydrogen Generation: Experimentation, Simulation, and Optimization
卓越的研究:微波辅助原位制氢:实验、模拟和优化
  • 批准号:
    2247676
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant

相似海外基金

Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
  • 批准号:
    2300319
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
  • 批准号:
    2247163
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
  • 批准号:
    2300405
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
  • 批准号:
    2344742
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
  • 批准号:
    2200377
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
  • 批准号:
    2300321
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
  • 批准号:
    2300448
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
  • 批准号:
    2300454
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
  • 批准号:
    2300475
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了