Conformal Mappings and Loewner Evoluation
共形映射和 Loewner 演化
基本信息
- 批准号:0201435
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: DMS-0201435PI: Donald Marshall and Steffen RohdeABSTRACTConformal mapping and Loewner evolutionsMarshall and Rohde will investigate conformal mappings generated by the Loewner differential equation, and related topics. TheLoewner differential equation describes the flow associated withthe conformal mappings onto a continuously decreasing sequence ofsimply connected planar domains. It relates a sequence of domainsto a real-valued function, the driving term of the equation.Schramm's recent discovery of the stochastic Loewner evolutionSLE, the Loewner equation driven by one-dimensional Brownianmotion, has opened up a new area of investigations involvingconformal mappings, probability theory and mathematical physics.The Loewner equation is also related to an algorithm fornumerical conformal mapping.Conformal mappings have applications in many areas, both within and outside of mathematics, such as control theory, heatconduction, fluid dynamics, and complex dynamics. They are oftenused to change coordinates from one region to a simpler regionlike a disc. Regions with smooth boundaries are well understood.However, the appearance of fractals in many branches of science led to the natural problem of investigating regions bounded by highly nonsmooth, fractal curves, from the conformal mappingpoint of view. In recent years, fractal curves generated byrandom processes arising, for instance, in statistical physics,have received enormous attention. The core of Marshall's andRohde's research is to better understand random fractal curvesby means of conformal mappings, and conversely to study someproblems about conformal mappings by analyzing domains boundedby fractal curves.
提案编号:DMS-0201435 PI:Donald马歇尔和Steffen Rohde摘要保形映射和Loewner演化马歇尔和Rohde将研究由Loewner微分方程生成的保形映射以及相关主题。Loewner微分方程描述了平面单连通域上连续递减序列的共形映射流。Schramm最近发现的随机Loewner演化SLE,即由一维布朗运动驱动的Loewner方程,开辟了一个新的研究领域,涉及共形映射,Loewner方程也与数值保角映射的算法有关。保角映射在许多领域都有应用。数学领域,包括数学内部和外部,如控制理论,热传导,流体动力学和复杂动力学。它们通常用于将坐标从一个区域改变到一个更简单的区域,如圆盘。具有光滑边界的区域是很好理解的。然而,分形在许多科学分支中的出现导致了从保角映射的观点来研究由高度非光滑的分形曲线包围的区域的自然问题。近年来,由随机过程产生的分形曲线,例如,在统计物理学中,受到了极大的关注。马歇尔和罗德研究的核心是利用共形映射来更好地理解随机分形曲线,反过来又通过分析分形曲线所围区域来研究共形映射的一些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Marshall其他文献
Donald Marshall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Marshall', 18)}}的其他基金
Mathematical Sciences: Classical Complex Analysis
数学科学:经典复分析
- 批准号:
9800464 - 财政年份:1998
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Classical Complex Analysis
数学科学:经典复分析
- 批准号:
9532078 - 财政年份:1996
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Classical Complex Analysis
数学科学:经典复分析
- 批准号:
9302823 - 财政年份:1993
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Classical Analysis: Complex Analysis,Computation, and Control
数学科学:经典分析:复分析、计算和控制
- 批准号:
9002852 - 财政年份:1990
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Analysis: Computation and Control.
数学科学:复分析:计算与控制。
- 批准号:
8801675 - 财政年份:1988
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: One Complex Variables
数学科学:一个复变量
- 批准号:
8601467 - 财政年份:1986
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Classical Analysis in One Complex Variable
数学科学:一个复杂变量的经典分析
- 批准号:
8121561 - 财政年份:1982
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
相似海外基金
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2323531 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Japanese Brazilian Literary Mappings of Asian-Latin American Relations: Bridging Borders Across Areas
日本巴西文学对亚洲与拉丁美洲关系的映射:跨越地区的边界
- 批准号:
23K18671 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
- 批准号:
RGPIN-2018-04239 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Quasiconformal and Sobolev mappings on metric measure spaces
度量测度空间上的拟共形映射和 Sobolev 映射
- 批准号:
22K13947 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
- 批准号:
22K03356 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Black hole thermodynamics, spacetime conformal mappings, cosmological perturbations, and modified gravity.
黑洞热力学、时空共形映射、宇宙扰动和修正引力。
- 批准号:
RGPIN-2017-05388 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Investigating Learning Action Mappings for Control Tasks in Reinforcement Learning and Teleoperation
研究强化学习和远程操作中控制任务的学习动作映射
- 批准号:
568768-2022 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mappings and Sequences over Finite Fields
有限域上的映射和序列
- 批准号:
RGPIN-2018-05328 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2152487 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant