Nanoscale Engineering of LDL-Retentive Substrates

LDL 保留基质的纳米工程

基本信息

  • 批准号:
    0201788
  • 负责人:
  • 金额:
    $ 29.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

0201788MogheCardiovascular disease takes a staggering toll of casualties among adult Americans each year. Two of the significant vascular pathologies related to the abnormal accumulation of lipids are atherosclerosis (the hardening of arteries due to build-up of low density lipoproteins (LDL)), and macrovascular disease, typically correlated with insulin resistant diabetes, which claims a million lives each year globally. Much research has been directed at the molecular design of drugs to alleviate the disorders of lipid metabolism. However, such drugs can be toxic to the liver and kidneys, and fail to comprehensively treat lipoprotein transport and retention dynamics, particularly at peripheral vascular sites. Thus, a comprehensive approach to treating lipid-related vascular disease could involve use of molecules regulating lipid metabolism as well as molecules that are suitably lipoprotein-philic and serve as multifunctional carriers for processing lipoproteins in transit. Ultimately, such carriers could be engineered to (a) sequester lipoproteins from macromolecular depots such as proteoglycans that heighten atherogenic tendencies; (b) reduce lipoprotein oxidation (which leads to unregulated uptake of LDL by macrophages, transforming them into foam cells, the precursors to atherosclerosis); and (c) enhance lipoprotein transport and clearance of mildly oxidized lipoproteins (via macrophages, and the liver). However, to engineer such carriers, an understanding of the chemical and geometric determinants of lipoprotein-retentive carrier substrates is necessary. This proposal describes a major research initiative toward this goal.The proteoglycans of the vascular intima are bulky, negatively charged molecules that present multimeric glycosaminoglycan (GAG) chains, which can co-operatively recruit low density lipoproteins, and encourage LDL hyperoxidation, which leads to foam cell formation during atherosclerosis. As a competitive strategy for LDL retention, the investigators propose to design novel diffusible, nanoscale carriers that can present GAG-mimetic chemistry and retain LDL with high affinity. To this end, two significant questions will be addressed: (a) Can the GAG-mimetic chemistry and nanoscale topography of model substrates be designed to synergistically recruit oxidized low density lipoproteins? (b) How can the insights derived in (a) be applied toward the use of mobile nanocarriers for LDL retention?To address (a), the investigators will theoretically simulate and experimentally explore the ability of immobilized gold nanoparticles (model substrates to test the LDL-reactivity of various chemistries) and substrate arravs of gold/ZnO nanopillars. functionalized with alkanethiols terminating in negatively charged groups (-COOH, -OSO3H), to sequester LDL. The hypothesis is that at adequately high densities, and in topographic substrate configurations affording inter-pillar cooperativity, such chemistries can electrostatically sequester LDL through the positively charged aminoacid residues from the apolipoprotein B-100 of the LDL. To address (b), the investigators will explore the use of polymeric dendrimer-Iike hyperbranched nanocarriers to present the most LDL-retentive chemistry observed in (a), in various nanoarchitectural configurations, that is, by systematically manipulating the valency, branching, and tethering of the molecular bait for the lipoprotein.
心血管疾病每年在美国成年人中造成惊人的伤亡。与脂质异常积累相关的两种重要的血管病理是动脉粥样硬化(由于低密度脂蛋白(LDL)的积聚导致的动脉硬化)和大血管疾病,其通常与胰岛素抵抗性糖尿病相关,其每年在全球夺去一百万人的生命。许多研究已经针对减轻脂质代谢紊乱的药物的分子设计。然而,这类药物可能对肝脏和肾脏有毒,并且不能全面治疗脂蛋白转运和保留动力学,特别是在外周血管部位。因此,治疗脂质相关血管疾病的综合方法可能涉及使用调节脂质代谢的分子以及适当亲脂蛋白并用作转运中处理脂蛋白的多功能载体的分子。最终,这些载体可以被改造为(a)从大分子库如蛋白聚糖中隔离脂蛋白,所述大分子库提高致动脉粥样硬化倾向;(B)减少脂蛋白氧化(这导致巨噬细胞对LDL的不受调节的摄取,将它们转化为泡沫细胞,动脉粥样硬化的前体);和(c)增强脂蛋白转运和轻度氧化脂蛋白的清除(通过巨噬细胞和肝脏)。然而,工程这样的载体,脂蛋白滞留载体基板的化学和几何决定因素的理解是必要的。 血管内膜的蛋白多糖是一种大的、带负电荷的多聚体糖胺聚糖(GAG)链,它可以协同募集低密度脂蛋白,促进LDL过氧化,导致动脉粥样硬化过程中泡沫细胞的形成。作为LDL保留的竞争策略,研究人员建议设计新的可扩散的纳米级载体,可以呈现GAG模拟化学并以高亲和力保留LDL。为此,两个重要的问题将得到解决:(a)可以GAG模拟化学和纳米级拓扑结构的模型基板被设计为协同招聘氧化低密度脂蛋白?(b)如何将(a)中得出的见解应用于使用移动的纳米载体来保留LDL?为了解决(a),研究人员将在理论上模拟和实验上探索固定化金纳米颗粒(用于测试各种化学品的LDL反应性的模型基底)和金/ZnO纳米柱的基底阵列的能力。用以带负电荷的基团(-COOH、-OSO 3 H)封端的烷硫醇官能化,以螯合LDL。假设是在足够高的密度下,并且在提供柱间协同性的地形基质配置中,这种化学物质可以通过来自LDL的载脂蛋白B-100的带正电荷的氨基酸残基静电螯合LDL。为了解决(B),研究者将探索使用聚合物树状聚合物样超支化纳米载体来呈现(a)中观察到的最具LDL保留性的化学,以各种纳米结构构型,即,通过系统地操纵脂蛋白的分子诱饵的化合价、分支和拴系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prabhas Moghe其他文献

Nanolipoblockers: Ex Vivo Human Plaque Interaction for Therapeutic Management for Atherosclerosis
  • DOI:
    10.1016/j.jvs.2013.07.050
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul B. Haser;Latrisha K. Petersen;Claire Fan;Kyle Zablocki;Adam W. York;Daniel R. Lewis;Kathryn E. Uhrich;Robert E. Prud'homme;Alan M. Graham;Prabhas Moghe
  • 通讯作者:
    Prabhas Moghe
Tissue engineering/Organogenesis
  • DOI:
    10.1007/bf02647372
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Prabhas Moghe;Francois Berthiaume
  • 通讯作者:
    Francois Berthiaume

Prabhas Moghe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prabhas Moghe', 18)}}的其他基金

Collaborative Research: How to Foil Synuclein Aggregation? Nanotechnology for Inhibition of Neurodegenerative Brain Plaques
合作研究:如何阻止突触核蛋白聚集?
  • 批准号:
    1803675
  • 财政年份:
    2018
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
IGERT: Integrated Science and Engineering of Stem Cells
IGERT:干细胞综合科学与工程
  • 批准号:
    0801620
  • 财政年份:
    2008
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
NIRT: Ligand Nanodisplay for Cellular Internalization and Super-Activation
NIRT:用于细胞内化和超级激活的配体纳米显示器
  • 批准号:
    0609000
  • 财政年份:
    2006
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
IGERT: Integrative Education and Research on Biointerfacial Engineering
IGERT:生物界面工程综合教育与研究
  • 批准号:
    0333196
  • 财政年份:
    2003
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
CAREER: Analysis and Design of Matrix Microstructure in Tissue Engineering
职业:组织工程中基体微结构的分析与设计
  • 批准号:
    9733007
  • 财政年份:
    1998
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
  • 批准号:
    10095606
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Collaborative R&D
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
  • 批准号:
    10107393
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Launchpad
Manchester Metropolitan University and Manufax Engineering Limited KTP 23_24 R3
曼彻斯特城市大学和 Manufax Engineering Limited KTP 23_24 R3
  • 批准号:
    10081986
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Knowledge Transfer Network
Robert Gordon University and Katoni Engineering Limited KTP 23_24 R3
罗伯特戈登大学和卡托尼工程有限公司 KTP 23_24 R3
  • 批准号:
    10085219
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Knowledge Transfer Network
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
  • 批准号:
    10089184
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Collaborative R&D
Thermal engineering in semiconductor heterojunction for space transducers
空间换能器半导体异质结的热工程
  • 批准号:
    DP240102230
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Discovery Projects
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
  • 批准号:
    DE240100115
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Discovery Early Career Researcher Award
New low-cost graphene production to revolutionise engineering applications
新型低成本石墨烯生产将彻底改变工程应用
  • 批准号:
    2911021
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Studentship
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了