Unitary Dual of Real Groups
实群的酉对偶
基本信息
- 批准号:0201944
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractSalamanca-Riba Dr. Salamanca Riba intends to investigate various problems in the representation theory of Lie groups. The first problem is the question of classifying all genuine unitary representations of the metaplectic group. Jeff Adams and Dan Barbasch have obtained a correspondence between these representations and a set of unitary representations of certain inner forms of the metaplectic group. The PI plans to study this correspondence and see if these representations go to interesting Zuckerman functor modules under this map. In addition, the PI will also work on a program already in progress in collaboration with David Vogan. The problem they want to solve is the following conjecture: There is a bijection between the set of unitary representations of a Lie group G, whose lowest K type is associated to a fixed parameter, and the set of unitary representations of a special subgroup with lowest K types associated to the same parameter.Lie groups have connections in many areas of applied Mathematics like Materials Science, Quantum Field Theory, Particle Physics, Control Theory and Robotics and Biology. For example, Control Theory and Robotics is related to some representations of certain compact Lie groups. In addition, Lie groups and their representations have also connections with other areas of pure Mathematics as well, like Differential Equations, Harmonic Analysis, Topology, Geometry and Ergodic Theory. For example, the study of problems in Analysis such as the behavior of solutions of differential equations, partial differential equations, integral equations, etc. leads naturally to formulating these problems not only in Euclidean space, but on differentiable manifolds. Many examples of these manifolds are classical Lie groups of matrices. This is particularly true of problems of this type arising in classical mechanics and physics and in modern problems of Lie groups and homogeneous spaces. Modern Analysis, when it goes beyond local results, becomes analysis on differentiable manifolds and Lie groups.,
摘要萨拉曼卡-里瓦 萨拉曼卡·里巴博士打算研究李群表示论中的各种问题。第一个问题是对亚群的所有真酉表示进行分类的问题。Jeff亚当斯和Dan Barbasch已经得到了这些表示与亚格群的某些内部形式的一组酉表示之间的对应。PI计划研究这种对应关系,看看这些表示是否会在这个映射下到达有趣的Zuckerman函子模块。此外,PI还将与大卫沃根合作开展一项已经在进行中的计划。 他们想要解决的问题是以下猜想:李群G的最低K型与一个固定参数相关联的酉表示集与一个特殊子群的最低K型与同一参数相关联的酉表示集之间存在一个双射。李群在许多应用数学领域都有联系,如材料科学,量子场论,粒子物理,控制理论、机器人学和生物学。例如,控制理论和机器人学与某些紧致李群的某些表示有关。此外,李群及其表示也与纯数学的其他领域有联系,如微分方程,调和分析,拓扑学,几何学和遍历理论。例如,研究问题的分析,如行为的解决方案的微分方程,偏微分方程,积分方程等自然导致制定这些问题不仅在欧几里德空间,但对可微流形。这些流形的许多例子是经典的李群矩阵。这是特别真实的问题,这种类型的出现在经典力学和物理学和现代问题的李群和齐次空间。现代分析,当它超越局部结果时,成为对可微流形和李群的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susana Salamanca-Riba其他文献
Susana Salamanca-Riba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susana Salamanca-Riba', 18)}}的其他基金
FRG: Collaborative Research: Atlas of Lie Groups and Representations: Unitary Representations
FRG:协作研究:李群和表示图集:酉表示
- 批准号:
0967583 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Unitary Representations and Zuckerman Modules
数学科学:酉表示和祖克曼模块
- 批准号:
9706922 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Unitary Representations of Lie Groups and Derived Functor Modules
数学科学:李群和派生函子模的酉表示
- 批准号:
9510608 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Unitary Representations of ReductiveReal Lie Groups and Derived Functor Modules
数学科学:还原实李群和派生函子模的酉表示
- 批准号:
9108990 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于双荧光结核菌和Dual RNA-seq技术的病原宿主免疫互作关键基因挖掘及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dual AGN 的系统搜寻及其性质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AKAP3通过其Dual和RI结构域整合多重信号通路调控精子活力和男性育性的机理研究
- 批准号:82171602
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
磷化双贱金属合金超薄膜dual-(Bimetallene-P)催化材料的超声脉冲界面构筑及其电解水性能研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于dual-buck本征安全型单相 V2G 变换器解耦式拓扑集成及复合调制策略
- 批准号:62141103
- 批准年份:2021
- 资助金额:12.00 万元
- 项目类别:专项项目
利用Dual RNA-sep研究猪瘟病毒与宿主转录组相互作用的分子机制
- 批准号:31872484
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
基于Dual-Kriging代理模型的稳健设计新方法及在板料成形中应用研究
- 批准号:51005193
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Further development of a unique dual-purpose real-time monitor of Tritium (Beta radiation) in Air & Tritium in Water at environmental levels.
进一步开发空气中氚(β辐射)的独特双用途实时监测仪
- 批准号:
10074646 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Real time Dual Laser Raman Reactor Analyser with Probe for key inorganic nutrients inside Microalgae Bioreactors
带探针的实时双激光拉曼反应器分析仪,用于分析微藻生物反应器内的关键无机营养物质
- 批准号:
10074658 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Study of real-time dual-comb spectroscopy in versatile spectral region based on on-chip devices
基于片上器件的通用光谱区实时双梳光谱研究
- 批准号:
22KF0143 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Combined Gamma-Ultrasound Imaging Probe for Dual-Modality, Real-Time, Intraoperative, Tumour Detection
用于双模态、实时、术中肿瘤检测的组合伽玛超声成像探头
- 批准号:
559893-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Combined Gamma-Ultrasound Imaging Probe for Dual-Modality, Real-Time, Intraoperative, Tumour Detection
用于双模态、实时、术中肿瘤检测的组合伽玛超声成像探头
- 批准号:
559893-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Development of COVID-19 Dual Diagnostic Test of Viral RNA and Proteins using DNA Aptamers and Real-Time PCR
使用 DNA 适体和实时 PCR 开发病毒 RNA 和蛋白质的 COVID-19 双重诊断测试
- 批准号:
550320-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alliance Grants
Real-sea recharging confirmation of underwater robot with dual-cameras and wide-space/high-accuracy perception by eye-vergence function
水下机器人双摄像头、宽空间/高精度眼视差感知的实海补给确认
- 批准号:
19H04190 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real Time Elucidation of Drug-Drug Interactions via Dual Reporter Cell Technology and Microfabricated Arrays
通过双报告细胞技术和微加工阵列实时阐明药物间相互作用
- 批准号:
9356507 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Real Time Elucidation of Drug-Drug Interactions via Dual Reporter Cell Technology and Microfabricated Arrays
通过双报告细胞技术和微加工阵列实时阐明药物间相互作用
- 批准号:
9767130 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Real World Assessment of Dual-Task Performance After Stroke
中风后双任务表现的真实世界评估
- 批准号:
8773018 - 财政年份:2014
- 资助金额:
-- - 项目类别: