Topological Quantum Numbers
拓扑量子数
基本信息
- 批准号:0201948
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports theoretical research and education on topological defects in condensed matter physics. Research will focus on three areas: (1) The PI will use results from the previous grant period related to the forces acting on quantized vortices to make detailed studies of vortices in liquid helium, in dilute systems of trapped atoms, and in superconductors. A clear understanding of the vortices in superconductors is particularly important, as it is the dynamics of vortices that primarily determines dissipation of energy in superconducting magnets. (2) Trapped atoms at low temperatures will be studied with an aim to understand what happens when the interactions are not very weak, and to understand how the rotational motion observed in such systems relates to rotational motion in superfluid helium and to the penetration of magnetic flux in superconductors. (3) The PI will continue work on the construction of a theory of the size of corrections to topological quantum numbers. It is supposed that corrections to flux quantization in superconductors and to quantization of electrical conductance in the quantum Hall effect can readily be made negligibly small; modern determinations of fundamental constants are based on the precision of the Josephson voltage-frequency relation and of the integer quantum Hall effect. The PI intends to examine more closely the corrections to quantization in the Josephson effects for neutral superfluids, and the possible edge corrections to the quantum Hall effect.%%%This award supports theoretical research and education on topological defects in a wide range of condensed matter systems. Topological defects play a fundamental and ubiquitous role in condensed matter and materials physics. They are key players in dissipation processes in superconductors and in determining the mechanical strength of materials. This award is concerned with fundamental aspects of topological defects and has an emphasis on the study of a particular kind of topological defect, vortices in superfluids and superconductors. 'Superfluid' includes not only the traditional superfluid states of the helium liquids that occur upon cooling to very low temperatures, but also the quantum coherent states recently realized in dilute gases of alkali atoms. The latter is not only of fundamental interest but contributes to the emerging area of quantum coherence control; quantum computing may be viewed as an application in this area.***
该奖项支持凝聚态物理中拓扑缺陷的理论研究和教育。研究将集中在三个方面:(1)PI将利用先前拨款期有关作用于量子化漩涡的力的结果,对液氦、被困原子的稀释系统和超导体中的漩涡进行详细研究。清楚地了解超导体中的涡旋是特别重要的,因为涡旋动力学主要决定了超导磁体中的能量耗散。(2)低温下的俘获原子将被研究,目的是了解当相互作用不是很弱时会发生什么,并了解在这种系统中观察到的旋转运动如何与超流氦中的旋转运动和超导体中磁通量的穿透有关。(3) PI将继续致力于构建拓扑量子数修正大小的理论。假定超导体中通量量子化的修正和量子霍尔效应中电导率量子化的修正可以很容易地小到可以忽略不计;现代基本常数的确定是基于约瑟夫森电压-频率关系和整数量子霍尔效应的精度。PI打算更仔细地研究中性超流体约瑟夫森效应对量子化的修正,以及量子霍尔效应可能的边缘修正。该奖项支持广泛凝聚态体系中拓扑缺陷的理论研究和教育。拓扑缺陷在凝聚态和材料物理中起着基础性和普遍存在的作用。它们是超导体耗散过程和决定材料机械强度的关键因素。该奖项关注拓扑缺陷的基本方面,并重点研究一种特殊类型的拓扑缺陷,超流体和超导体中的涡流。“超流体”不仅包括冷却到极低温度时氦液体的传统超流体状态,还包括最近在碱原子的稀释气体中实现的量子相干态。后者不仅具有根本意义,而且有助于新兴的量子相干控制领域;量子计算可以看作是这一领域的一个应用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Thouless其他文献
David Thouless的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Thouless', 18)}}的其他基金
Theoretical Research in Statistical Mechanics
统计力学理论研究
- 批准号:
9220733 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Theoretical Studies of Spin Glasses, Electrons in DisorderedSystems, and Two-Dimensional Phase Transition
自旋玻璃、无序系统中的电子和二维相变的理论研究
- 批准号:
8024855 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Determination of topological quantum numbers and search for novel electronic phases in Kitaev quantum spin liquid materials
确定基塔耶夫量子自旋液体材料中的拓扑量子数并寻找新型电子相
- 批准号:
21H01793 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel topological numbers associated with entangled quantum states
与纠缠量子态相关的新颖拓扑数
- 批准号:
17K05563 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scaling limits of the electronic Schrödinger equation fordiatomic molecules: Asymptotic prediction of correlation structure,potential energy curves, and symmetry quantum numbers
双原子分子电子薛定谔方程的标度极限:相关结构、势能曲线和对称量子数的渐近预测
- 批准号:
234732874 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Method of computing Hall conductivities on discrete Brillouin zone-topological quantum numbers on lattices-
计算离散布里渊区霍尔电导率的方法-晶格上的拓扑量子数-
- 批准号:
18540365 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rank one forms in geometry of numbers-quantum phases
数量子相几何中的一级形式
- 批准号:
5355-1998 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual