Ergodic Properties of Nonuniformly Hyperbolic Systems

非均匀双曲系统的遍历性质

基本信息

  • 批准号:
    0202999
  • 负责人:
  • 金额:
    $ 8.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: DMS-0202999PI: Huyi Hu ABSTRACTThis project is devoted to the study of ergodic properties ofnonuniformly hyperbolic systems. We focus on almosthyperbolic systems and some related systems. An smooth dynamicalsystem is almost hyperbolic if it is hyperbolic everywhere exceptat a finite set of points. Such systems may have quite differentergodic behaviors from uniformly hyperbolic systems.In this project we will study existence of equilibrium states,including SRB measures and absolutely continuous invariantmeasures in multidimensional spaces; rates of convergence to theequilibrium states for both finite and infinite measure cases,and some related topics such as rates of decay of correlations ofthe systems and the central limit theorem; some other ergodicproperties of the systems such as stochastic stability, Gibbsproperties, topological conjugation. We are also interested inusing these or similar systems to construct varies examples ofsystems that have given properties, for instance, diffeomorphismsor flows on any manifolds that preserve the Riemannianvolume, have nonzero Lyapunov exponents almost everywhere, andhave countably many ergodic components.Ergodic theory concerns the statistic behavior of systems.Ergodic properties of uniformly hyperbolic systems were the mainresearch subject in smooth dynamical systems from 60's to 80's.The behaviors of such systems are regarded as chaotic.Now nonuniformly hyperbolic systems become a main research topicin the field. This project is devoted to the study of ergodicproperties of almost hyperbolic systems and some other relatedsystems. Almost hyperbolic systems are smooth dynamical systemsin which hyperbolic conditions are violated at only finitelynumber of points. These systems lie on the boundary of the setof uniformly hyperbolic systems, and are the simplest butnontrivial nonuniformly hyperbolic systems. Earlier studies onexamples of such systems, such as systems on the intervals andtorus, show that some ergodic properties may change dramatically.In this project we try to develop some theorems for generalalmost hyperbolic systems rather than individual examples.
项目编号:DMS-0202999项目负责人:胡毅摘要本项目致力于研究非一致双曲系统的遍历性。 我们主要研究准抛物型方程组及其相关的方程组。 一个光滑动力系统几乎是双曲的,如果它在除有限点集之外的任何地方都是双曲的。 这类系统可能具有与一致双曲型系统完全不同的遍历性态,本项目将研究多维空间中平衡态的存在性,包括SRB测度和绝对连续不变测度,有限和无限测度情形下到平衡态的收敛速度,以及系统相关性的衰减速度和中心极限定理;系统的随机稳定性、Gibbs性质、拓扑共轭等遍历性。我们还对使用这些或类似系统来构造具有给定性质的系统的各种示例感兴趣,例如,任何保持Riemann体积的流形上的微分同胚流,几乎处处具有非零的李雅普诺夫指数,一致双曲系统的遍历性是光滑动力系统的主要研究对象,60年代到80年代,这类系统的行为被认为是混沌的,现在非一致双曲系统已成为该领域的一个主要研究课题。 本项目致力于研究几乎双曲型方程组及其它相关方程组的遍历性。几乎双曲型系统是仅在有限个点处违反双曲条件的光滑动力系统。 这些方程组位于一致双曲方程组的边界上,是最简单但非平凡的非一致双曲方程组。 早期对此类系统示例(例如区间和环面上的系统)的研究表明,一些遍历性质可能会发生显着变化。在本项目中,我们试图针对一般几乎双曲系统而不是个别示例建立一些定理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolai Haydn其他文献

Nicolai Haydn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolai Haydn', 18)}}的其他基金

The return time statistics for non-markovian maps
非马尔可夫地图的返回时间统计
  • 批准号:
    0602202
  • 财政年份:
    2006
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Recurrence and Mixing in Dynamical Systems
动力系统中的循环和混合
  • 批准号:
    0301910
  • 财政年份:
    2003
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Continuing Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
  • 批准号:
    0084771
  • 财政年份:
    2000
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Statistical Behaviour of Recurrence in Dynamical Systems
动力系统中递归的统计行为
  • 批准号:
    0070917
  • 财政年份:
    2000
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Pressure and Local Entropy in Dynamical Systems
数学科学:动力系统中的压力和局部熵
  • 批准号:
    9106307
  • 财政年份:
    1991
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了