Optimization: Theory, Algorithms, and Applications

优化:理论、算法和应用

基本信息

  • 批准号:
    0203175
  • 负责人:
  • 金额:
    $ 21.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

0203175Burke In this research we develop theoretical and numerical tools for understanding and exploiting the variational behavior of spectral functions. Briefly, spectral functions are mappings of the spectrum of real or complex valued matrices to the real numbers. Two examples are the spectral abscissa (the maximum real part of the spectrum) and the spectral radius (the maximum modulus of the spectrum). The spectral abscissa and the spectral radius play an important role in understanding the asymptotic behavior of continuous and discrete dynamical systems, respectively. For this reason, understanding their variational behavior will greatly impact a number of application areas. In general, spectral functions have a number of features that make them difficult to analyze. Foremost among these is that they are typically nondifferentiable, indeed non-Lipschitzian. These functions can be very poorly behaved especially in regions of interest for optimization. Thus, even though these functions have a classical history in mathematics, science, and engineering, intimate knowledge of their variational behavior has proven elusive. For this reason, new tools of analysis in conjunction with classical techniques are required. In this research we bring together the modern techniques of variational analysis and classical methods of Puiseux-Newton series, semi-algebraic sets, conformal mappings, and the geometry of polynomials. These tools have proven to be phenomenally successful in shedding new light on this very important class of functions.In optimization theory and practice one tries to either minimize or maximize a performance measure subject to limitations on how the performance measure can be adjusted. Optimization is a fundamentally interdisciplinary area of research having a significant impact on a wide range of academic, industrial, and government research activities. Research in optimization requires theoretical advances, the development of numerical solution methods, and a firm grounding in applications. The particular research outlined in this proposal focuses on optimization problems that are closely related to the stability properties of systems that evolve with time. In particular, it impacts the design of structures such as buildings and aircraft that are subject to temporal deformations from environmental factors such as an earthquake or a wind-shear. The underlying optimization problem in this context is to make the structure as stable as possible in a potentially hostile environment while satisfying certain design limitations on such things as weight, size, and cost. The great difficulty in this research is that the performance measures under consideration, such as stability, do not vary in a smooth manner as the underlying parameters vary. Consequently fundamentally new methods of analysis are required to understand the variational behavior of these performance measures. Indeed, the mathematical tools necessary for this kind of analysis have only very recently been developed. In this research we intend to make significant inroads into the analysis of these kinds of problems and to develop a range of numerical methods that can be used to solve them.
0203175 Burke在这项研究中,我们开发了理论和数值工具,用于理解和利用谱函数的变分行为。简而言之,谱函数是真实的或复值矩阵的谱到真实的数的映射。两个例子是谱横坐标(谱的最大真实的部分)和谱半径(谱的最大模)。谱横坐标和谱半径分别在理解连续和离散动力系统的渐近行为中起着重要的作用。因此,理解它们的变分行为将极大地影响许多应用领域。一般来说,谱函数具有许多使其难以分析的特征。其中最重要的是,它们通常是不可微的,实际上是非Lipschitz的。这些函数可能表现得非常差,特别是在优化的感兴趣区域中。因此,尽管这些函数在数学、科学和工程中有着经典的历史,但对它们的变分行为的深入了解已经被证明是难以捉摸的。因此,需要新的分析工具与经典技术相结合。在这项研究中,我们汇集了现代技术的变分分析和经典方法的Puietrix-牛顿级数,半代数集,保形映射,和几何的多项式。这些工具已经被证明是非常成功的,在这类非常重要的函数上有了新的认识。在优化理论和实践中,人们试图最小化或最大化一个性能度量,但要受到性能度量如何调整的限制。优化是一个基本的跨学科研究领域,对广泛的学术,工业和政府研究活动产生重大影响。优化研究需要理论的进步,数值求解方法的发展,以及应用的坚实基础。本提案中概述的特定研究重点是与随时间演变的系统的稳定性密切相关的优化问题。特别是,它会影响建筑物和飞机等结构的设计,这些结构会因地震或风切变等环境因素而发生暂时变形。在这种情况下,潜在的优化问题是使结构在潜在的恶劣环境中尽可能稳定,同时满足某些设计限制,如重量,尺寸和成本。在这项研究中的巨大困难是,所考虑的性能指标,如稳定性,不以平滑的方式变化的基本参数的变化。因此,需要从根本上新的分析方法来理解这些性能指标的变化行为。事实上,这种分析所需的数学工具只是最近才开发出来的。在这项研究中,我们打算在分析这类问题方面取得重大进展,并开发一系列可用于解决这些问题的数值方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Burke其他文献

Emulating 3 Clinical Trials That Compare Stroke Rehabilitation at Inpatient Rehabilitation Facilities With Skilled Nursing Facilities
  • DOI:
    10.1016/j.apmr.2021.12.029
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kent P. Simmonds;James Burke;Allan J. Kozlowski;Michael Andary;Zhehui Luo;Mathew J. Reeves
  • 通讯作者:
    Mathew J. Reeves
Learning from Crisis
从危机中学习
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karl E. Kim;E. Yamashita;Jiwnath Ghimire;James Burke;Lydia Morikawa;LeeAnna Kobayashi
  • 通讯作者:
    LeeAnna Kobayashi
WHEN PLUGS FLY OUT
  • DOI:
    10.1016/s0735-1097(20)33920-6
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Khalil Anouti;Louma Rustam;Lina Anouti;Marc Maalouf;Sandra Abramson;Michael Macciocca;James Burke;William A. Gray
  • 通讯作者:
    William A. Gray
Factors Associated with Discharge to a Skilled Nursing Facility Compared to Home Following Stroke Rehabilitation
  • DOI:
    10.1016/j.apmr.2019.08.044
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kent Simmonds;James Burke;Mathew Reeves
  • 通讯作者:
    Mathew Reeves
AMINE METABOLISM AND THE SMALL BOWEL IN URÆMIA
尿毒症的胺代谢和小肠
  • DOI:
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Simenhoff;James Burke;J. Saukkonen;L. Wesson;R. Schaedler
  • 通讯作者:
    R. Schaedler

James Burke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Burke', 18)}}的其他基金

Structured Non-Smooth Optimization: Theory and Methods
结构化非光滑优化:理论与方法
  • 批准号:
    1908890
  • 财政年份:
    2019
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Smoothing Methods in Optimization
优化中的平滑方法
  • 批准号:
    1514559
  • 财政年份:
    2015
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Variational Analysis, Optimization of Eigenvalues, and Robust Stability
变分分析、特征值优化和鲁棒稳定性
  • 批准号:
    0505712
  • 财政年份:
    2005
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Continuing Grant
Optimization: Theory, Algorithms, and Applications
优化:理论、算法和应用
  • 批准号:
    9971852
  • 财政年份:
    1999
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Eigenvalue Optimization and Robust Mathematical Programming
数学科学:特征值优化和鲁棒数学规划
  • 批准号:
    9303772
  • 财政年份:
    1993
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Eigenvalue Optimization and Robust Mathematical Programming
数学科学:特征值优化和鲁棒数学规划
  • 批准号:
    9102059
  • 财政年份:
    1991
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exact Penalty Functions in Constrained Optimization
数学科学:约束优化中的精确罚函数
  • 批准号:
    8803206
  • 财政年份:
    1988
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exact Penalty Functions in Constrained Optimization
数学科学:约束优化中的精确罚函数
  • 批准号:
    8602399
  • 财政年份:
    1986
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Graph Algorithms and Optimization: Theory and Scalable Algorithms
图算法和优化:理论和可扩展算法
  • 批准号:
    22H05001
  • 财政年份:
    2022
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2022
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and algorithms for solving bilevel optimization and other important nonsmooth and/or nonconvex optimization problems
解决双层优化和其他重要的非光滑和/或非凸优化问题的理论和算法
  • 批准号:
    RGPIN-2018-03709
  • 财政年份:
    2022
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and algorithms for combinatorial optimization under uncertainty
不确定性下的组合优化理论与算法
  • 批准号:
    21H03397
  • 财政年份:
    2021
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2021
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneity Pursuit in Regression Analysis: Statistical Theory, Integer Optimization, and Algorithms
回归分析中的同质性追求:统计理论、整数优化和算法
  • 批准号:
    2113564
  • 财政年份:
    2021
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Theory and algorithms for solving bilevel optimization and other important nonsmooth and/or nonconvex optimization problems
解决双层优化和其他重要的非光滑和/或非凸优化问题的理论和算法
  • 批准号:
    RGPIN-2018-03709
  • 财政年份:
    2021
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了