Subdivision Rules and 3-Manifold Topology
细分规则和 3 流形拓扑
基本信息
- 批准号:0203902
- 负责人:
- 金额:$ 8.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-15 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0203902William J. FloydThis project is an attempt to resolve the hyperbolic case ofThurston's Geometrization Conjecture. Specifically, the goal is toresolve the conjecture that a Gromov-hyperbolic group with space atinfinity a 2-sphere has a cocompact, properly discontinuous action onhyperbolic 3-space. The investigator and his collaborators areapproaching the conjecture from the point of view of provingconformality of certain recursive sequences of tilings on the spaceat infinity of a Gromov-hyperbolic group. Previous work has indicatedthat conformality of a recursive sequence of tilings might followfrom finding an invariant conformal structure for a branched surfaceassociated to the recursive structure. This possibility arose from aconnection between the recursive structures and rational maps, andThurston's classification theorem for critically finite branched mapsof the 2-sphere gives insight into how the theory might develop.Multiple approaches are planned for finding an invariant conformalstructure. Further work is also planned on twisted face-pairing3-manifolds. Much of the basic theory of twisted face pairings hasbeen completed, but some questions remain which are central tofurther developments of the theory. Significant progress here couldhelp the main part of the project, since twisted face pairings are agood source of test examples for the conjecture stated above.The immediate focus of this proposal is on sequences of planartilings. Given an initial tiling and a combinatorial rule forsubdivision, one recursively obtains a sequence of subdivisions ofthe initial tiling. The goal is to understand when these combinatorialsubdivisions can be realized geometrically so that the tiles stay"almost round" at all stages of the sequence. This problem isinteresting in its own right, but it is being studied here as part ofa deeper problem. It is a key feature of a program of theinvestigator and his collaborators to resolve the hyperbolic case ofWilliam P. Thurston's Geometrization Conjecture. The GeometrizationConjecture, which is the central outstanding problem inlow-dimensional topology (it includes the Poincare conjecture as aspecial case), states that every compact 3-manifold can be naturallysubdivided into geometric pieces. The techniques being developed forapproaching this have potential applications in other disciplines.
DMS-0203902 William J. Floorman这个项目是试图解决Thurston的几何化猜想的双曲情况。具体地说,我们的目标是解决一个猜想,即一个空间在2-球面上的Gromov-双曲群在3-双曲空间上有一个余紧的,真不连续的作用。研究者和他的合作者们从证明Gromov-双曲群无穷远空间上的某些平铺递归序列的共形性的角度来处理这个猜想。以前的工作表明,一致性的递归序列的平铺可能遵循从找到一个不变的共形结构的分支surfacesociated递归结构。这种可能性来自递归结构和有理映射之间的联系,Thurston的2-sphere的临界有限分支映射的分类定理使我们深入了解了理论的发展。进一步的工作也计划在扭曲面pairing 3-流形。扭曲面配对的基本理论已经完成了很多,但仍存在一些问题,这些问题是扭曲面配对理论进一步发展的核心。这里的重大进展可能有助于项目的主要部分,因为扭曲面配对是上述猜想的测试示例的良好来源。给定一个初始镶嵌和一个组合细分规则,递归地得到初始镶嵌的细分序列。我们的目标是了解这些组合细分何时可以几何实现,以便瓷砖在序列的所有阶段都保持“几乎圆形”。这个问题本身就很有趣,但它是作为一个更深层次问题的一部分来研究的。这是一个程序的调查员和他的合作者解决双曲的情况下威廉P瑟斯顿的几何化猜想的一个关键特征。几何化猜想是低维拓扑学中的中心问题(它包括Poincare猜想作为特例),它指出每一个紧致3-流形都可以自然地细分为几何块。为接近这一点而开发的技术在其他学科中也有潜在的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Floyd其他文献
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study
将降水产生的淡水通量表示到近岸海洋模型中的简单方法:FVCOM4.1 案例研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Krysten Rutherford;L. Bianucci;William Floyd - 通讯作者:
William Floyd
Roads Surface Erosion Part 1: Summary of effects, processes, and assessment procedures
道路表面侵蚀第 1 部分:影响、过程和评估程序摘要
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
E. J. Baird;William Floyd;I. Meerveld;Axel E. Anderson - 通讯作者:
Axel E. Anderson
William Floyd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Floyd', 18)}}的其他基金
Low-Dimensional Topology and Subdivision Rules
低维拓扑和细分规则
- 批准号:
9971783 - 财政年份:1999
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies of Negatively Curved Groups
数学科学:负曲群的研究
- 批准号:
9704043 - 财政年份:1997
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Geometric Group Theory
数学科学:几何群论研究
- 批准号:
9400900 - 财政年份:1994
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Geometric Topology
数学科学:几何拓扑研究
- 批准号:
8902199 - 财政年份:1989
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Group Theory and Topology
数学科学:几何群论和拓扑
- 批准号:
8701419 - 财政年份:1987
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
相似海外基金
MFB: Cracking the codes: understanding the rules of mRNA localization and translation
MFB:破解密码:了解 mRNA 定位和翻译的规则
- 批准号:
2330283 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
- 批准号:
2349052 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Rules of life in CO2-driven microbial communities: Microbiome engineering for a Net Zero future
二氧化碳驱动的微生物群落的生命规则:净零未来的微生物组工程
- 批准号:
BB/Y003195/1 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Research Grant
Unravelling the structural rules of antiperovskites and their derivatives
揭示反钙钛矿及其衍生物的结构规则
- 批准号:
23K23045 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Taming of the Streptomycete: Understanding the rules of domestication in antibiotic-producing bacteria
驯服链霉菌:了解产生抗生素的细菌的驯化规则
- 批准号:
BB/Y00082X/1 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Research Grant
CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
- 批准号:
2338596 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
URoL:ASC: Using Rules of Life to Capture Atmospheric Carbon: Interdisciplinary Convergence to Accelerate Research on Biological Sequestration (CARBS)
URoL:ASC:利用生命规则捕获大气碳:跨学科融合加速生物固存 (CARBS) 研究
- 批准号:
2319597 - 财政年份:2024
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
UNDERSTANDING THE RULES OF LIFE - Regulation of cellular stress responses by long noncoding RNAs
了解生命规则 - 长非编码 RNA 调节细胞应激反应
- 批准号:
2890784 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Studentship
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
- 批准号:
2320104 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant