Taming of the Streptomycete: Understanding the rules of domestication in antibiotic-producing bacteria
驯服链霉菌:了解产生抗生素的细菌的驯化规则
基本信息
- 批准号:BB/Y00082X/1
- 负责人:
- 金额:$ 59.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Streptomyces are bacteria that make antibiotics to enable them to survive in soil. It is these molecules that comprise around two-thirds of our clinically used antibiotics, without which modern medicine would cease to function. They are used to treat infections, but they are also used extensively prior to surgery and in immunocompromised patients (cancer, transplant patients, HIV/AIDS etc) to prevent infections. The rise in antibiotic resistant infections in recent years has indicated that there is an urgent need for us to increase the production efficiency of existing antibiotics to help combat the resistance crisis. Industrial production of antibiotics is achieved by growing Streptomyces in large fermenters using specialised media. The bacteria used are not the wild-type Streptomyces, but strains that have undergone extensive rounds of 'improvement' to help them efficiently make more antibiotics. The 'improvement' process for Streptomyces can be thought of like a selective breeding or domestication process for plants or animals, where those exhibiting the best traits are selected for future breeding. This means that each generation is better adapted for growth in the fermenter, rather than soil, and produces more antibiotics. To generate the improved strains, the Streptomyces are exposed to chemicals that bring about changes (mutations) in their DNA, and the resulting strains which show an increase in antibiotic production are chosen for further rounds of improvement (also known as mutagenesis and selection). This has been done for all industrial Streptomyces strains, yet we have very little understanding or knowledge of the kinds of changes the best strains have and therefore what makes them good overproducers of antibiotics. This means that every new antibiotic has to undergo a long and laborious process to produce commercial amounts of antibiotic. GSK have been performing mutagenesis and selection with a strain of Streptomyces for more than 35 years that makes an important antibiotic called clavulanic acid (CA). The World Health Organisation consider CA as one of its essential medicines and understanding the production of CA is important in the fight against antimicrobial resistance.Understanding how antibiotic-producing bacteria can increase the production of antibiotics is important for us to be able to better exploit Streptomyces for human medicine and agriculture. To achieve this, we have been analysing the genomes of the GSK CA-producing lineage of Streptomyces and identifying the mutations that allow them to produce up to five-times more CA than the wild-type strain. We will experimentally test each of these mutations to see which are responsible for the increase in CA production and if any of the mutations limit how much CA can be produced. It may be that while overall the mutations help increase CA production, some mutations may damage certain parts of metabolism, preventing strains from reaching their full potential. It is also possible that the order in which these mutations occurred could determine how good at producing CA the Streptomyces can become. We will use genome editing to test if the mutations need to accumulate in a specific order to have a beneficial effect. Finally, once we have identified some important mutations for increasing CA production, we will try and make the same mutations in other industrially important Streptomyces to see if these changes also increase antibiotic production. We believe that this is possible because the building blocks for many antibiotics are derived from the same parts of metabolism as the building blocks for CA.We believe this approach will make it easier and quicker to bring new antibiotics to the clinic in the future to help combat the growing antimicrobial resistant infection crisis.
链霉菌是制造抗生素的细菌,使它们能够在土壤中生存。正是这些分子构成了我们临床使用的抗生素的大约三分之二,没有这些分子,现代医学将停止运作。它们用于治疗感染,但它们也广泛用于手术前和免疫功能低下的患者(癌症,移植患者,HIV/AIDS等)以预防感染。近年来抗生素耐药性感染的增加表明,我们迫切需要提高现有抗生素的生产效率,以帮助应对耐药性危机。抗生素的工业生产是通过在大型发酵罐中使用专门的培养基培养链霉菌来实现的。使用的细菌不是野生型链霉菌,而是经过广泛“改进”的菌株,以帮助它们有效地制造更多的抗生素。链霉菌的“改良”过程可以被认为是植物或动物的选择性育种或驯化过程,其中那些表现出最佳性状的被选择用于未来的育种。这意味着每一代都更适合在发酵罐中生长,而不是在土壤中生长,并产生更多的抗生素。为了产生改进的菌株,链霉菌暴露于在其DNA中引起变化(突变)的化学物质,并且选择显示抗生素产量增加的所得菌株进行进一步的改进(也称为诱变和选择)。所有工业链霉菌株都是这样做的,但我们对最好的菌株所具有的变化种类以及是什么使它们成为抗生素的良好过度生产者知之甚少。这意味着每一种新的抗生素都必须经过漫长而艰苦的过程才能生产出商业数量的抗生素。葛兰素史克公司已经用一种链霉菌株进行诱变和选择超过35年,这种链霉菌株可以生产一种重要的抗生素克拉维酸(CA)。世界卫生组织(WHO)将CA作为其基本药物之一,了解CA的产生对于对抗抗生素耐药性非常重要,了解产酸细菌如何增加抗生素的产量对于我们能够更好地开发链霉菌用于人类医学和农业非常重要。为了实现这一目标,我们一直在分析GSK CA生产链霉菌谱系的基因组,并确定突变,使它们能够产生比野生型菌株多五倍的CA。我们将通过实验测试这些突变中的每一个,看看哪些是导致CA产量增加的原因,以及是否有任何突变限制了CA的产量。可能的是,虽然总体上突变有助于增加CA的产生,但某些突变可能会损害代谢的某些部分,阻止菌株发挥其全部潜力。这些突变发生的顺序也可能决定链霉菌产生CA的能力。我们将使用基因组编辑来测试突变是否需要以特定顺序积累才能产生有益效果。最后,一旦我们确定了一些增加CA产量的重要突变,我们将尝试在其他工业上重要的链霉菌中进行相同的突变,看看这些变化是否也增加了抗生素的产量。我们相信这是可能的,因为许多抗生素的构建模块与CA的构建模块来自相同的代谢部分。我们相信这种方法将使未来更容易,更快地将新抗生素引入临床,以帮助应对日益增长的抗生素耐药性感染危机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hoskisson其他文献
Actinomycetologists: a vibrant and strong scientific community. Papers from the 14th International Symposium on the Biology of Actinomycetes
- DOI:
10.1007/s10482-008-9245-z - 发表时间:
2008-04-27 - 期刊:
- 影响因子:1.800
- 作者:
Lubbert Dijkhuizen;Mike Goodfellow;Paul Hoskisson;Iain Sutcliffe - 通讯作者:
Iain Sutcliffe
Paul Hoskisson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Hoskisson', 18)}}的其他基金
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 59.47万 - 项目类别:
Research Grant
Chance and Necessity: Evolution guided antibiotic improvement and discovery
机遇与必然:进化引导抗生素的改进和发现
- 批准号:
BB/T001038/1 - 财政年份:2019
- 资助金额:
$ 59.47万 - 项目类别:
Research Grant
Re-engineering robustness in to industrial antibiotic producing Streptomyces strains
重新设计工业抗生素生产链霉菌菌株的稳健性
- 批准号:
BB/T004126/1 - 财政年份:2019
- 资助金额:
$ 59.47万 - 项目类别:
Research Grant
Enhancing the yield of industrial Actinomycete fermentations
提高工业放线菌发酵的产量
- 批准号:
BB/N023544/1 - 财政年份:2016
- 资助金额:
$ 59.47万 - 项目类别:
Research Grant
Clash of the Kingdoms: How the quest for nutrients leads to pathogenicity
王国的纷争:对营养的追求如何导致致病性
- 批准号:
NE/M001415/1 - 财政年份:2014
- 资助金额:
$ 59.47万 - 项目类别:
Research Grant
相似海外基金
Molecular breeding of a novel streptomycete host for antibiotic production using genomic information to highly establish lignocellulose as a resource
利用基因组信息对用于抗生素生产的新型链霉菌宿主进行分子育种,以高度建立木质纤维素资源
- 批准号:
20K05810 - 财政年份:2020
- 资助金额:
$ 59.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Streptomycete biology and bioremediation
链霉菌生物学和生物修复
- 批准号:
121909-2001 - 财政年份:2001
- 资助金额:
$ 59.47万 - 项目类别:
Discovery Grants Program - Individual
Streptomycete biology and bioremediation
链霉菌生物学和生物修复
- 批准号:
121909-2000 - 财政年份:2000
- 资助金额:
$ 59.47万 - 项目类别:
Discovery Grants Program - Individual