Rigorous Results for Self-Organizing Complex Systems

自组织复杂系统的严格结果

基本信息

  • 批准号:
    0204018
  • 负责人:
  • 金额:
    $ 14.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

0204018Griffeath Griffeath will continue his ongoing research program, focusing initially on theorems for the Traffic Cellular Automaton (TCA), and on rigorous derivation of asymptotic densities for von Koch two-dimensional solidification rules. Foundations of the traffic project are described in a recent paper, joint with Lawrence Gray of the University of Minnesota, in the Journal of Statistical Physics. Motivated by empirical work of Kai Nagel and others, the authors give convincing evidence that the TCA exhibits several phase transitions as the density of cars increases, and for a certain range of densities clusters into a mixture of two self-organized extreme ergodic states called free flow and synchronized jam. The research program will further analyze this model, intended to establish the new phenomenon of conservative clustering, and also to shed light on the underlying mechanism. In a separate project, Griffeath will study Von Koch crystals, very simple deterministic nearest-neighbor Cellular Automaton growth rules on the two-dimensional integer lattice, many of which are exactly solvable but aperiodic. A novel computational machinery will be developed in order to rigorously describe the self-organized, often fractal structure of these crystals by means of a generalized formal language, interactive visualization, nonlinear recursion, and computer-aided proof. The research of David Griffeath combines mathematical analysis and computer visualization in the study of complex spatial systems. Over his career, the investigator has exploited this interplay for the theoretical and empirical study of a wide variety of dynamics which serve as prototypes for phenomena across the sciences: spiral formation in excitable media, crystal growth, and various other nonlinear processes such as nucleation, flocking, host-parasite interactions, dendritic growth, phase separation by surface tension, ecological competition, and growth of biofilms. Griffeath is currently launching a major study of "Traffic Cellular Automata" models which emulate the emergence of traffic jams. Most of the initial effort on this project has been simulation-based. Now that effective software tools have been developed for visualization and quantitative measurement of these subtle, self-organizing systems, Griffeath intends to derive a mathematically rigorous theory of the observed
0204018 Griffeath Griffeath将继续他正在进行的研究计划,最初专注于交通元胞自动机(TCA)的定理,并严格推导冯科赫二维凝固规则的渐近密度。交通项目的基础在最近与明尼苏达大学的劳伦斯·格雷联合发表在《统计物理学杂志》上的一篇论文中进行了描述。受凯内格尔等人的经验工作的启发,作者给出了令人信服的证据,即随着汽车密度的增加,TCA表现出几个相变,并在一定范围内的密度集群成两个自组织的极端遍历状态的混合物,称为自由流和同步堵塞。本研究计画将进一步分析此模型,以建立保守性群集的新现象,并揭示其内在机制。在一个单独的项目中,Griffeath将研究Von Koch晶体,这是二维整数晶格上非常简单的确定性最近邻元胞自动机生长规则,其中许多是精确可解但非周期性的。将开发一种新的计算机器,以严格描述自组织的,往往是分形结构的这些晶体通过广义的形式语言,交互式可视化,非线性递归,和计算机辅助证明。大卫格里菲思的研究在复杂空间系统的研究中结合了数学分析和计算机可视化。在他的职业生涯中,研究人员利用这种相互作用对各种各样的动力学进行理论和实证研究,这些动力学作为跨科学现象的原型:可激发介质中的螺旋形成,晶体生长和各种其他非线性过程,如成核,群集,宿主-寄生虫相互作用,树枝状生长,表面张力相分离,生态竞争和生物膜的生长。Griffeath目前正在开展一项主要研究,即模拟交通堵塞出现的“交通元胞自动机”模型。该项目的大部分初始工作都是基于模拟的。既然已经开发出有效的软件工具来可视化和定量测量这些微妙的自组织系统,Griffeath打算推导出一个数学上严格的理论,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Griffeath其他文献

A mathematical model for first degree block and the Wenckebach phenomenon.
一级阻滞和文克巴赫现象的数学模型。
Occupation time large deviations of the voter model
  • DOI:
    10.1007/bf00319297
  • 发表时间:
    1988-03-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Maury Bramson;J. Theodore Cox;David Griffeath
  • 通讯作者:
    David Griffeath
Consolidation rates for two interacting systems in the plane
  • DOI:
    10.1007/bf00324856
  • 发表时间:
    1986-11-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Maury Bramson;J. Theodore Cox;David Griffeath
  • 通讯作者:
    David Griffeath
On the uniqueness of certain interacting particle systems
Contact processes in several dimensions
  • DOI:
    10.1007/bf00532808
  • 发表时间:
    1982-01-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Richard Durrett;David Griffeath
  • 通讯作者:
    David Griffeath

David Griffeath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Griffeath', 18)}}的其他基金

Theory and Applications of Random Cellular Automata and Related Models
随机元胞自动机及相关模型的理论与应用
  • 批准号:
    9971543
  • 财政年份:
    1999
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Workshop on Constructive Methods in Cellular Automata Theory
元胞自动机理论构造方法研讨会
  • 批准号:
    9802556
  • 财政年份:
    1998
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Rigorous and Empirical Analysis of Random Cellular Automata
随机元胞自动机的严格实证分析
  • 批准号:
    9626152
  • 财政年份:
    1996
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant
The CAM-8 as an Ecomachine
CAM-8 作为经济机器
  • 批准号:
    9417439
  • 财政年份:
    1994
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Interacting Particle Systems and Random Cellular Automata
数学科学:相互作用的粒子系统和随机元胞自动机
  • 批准号:
    9300612
  • 财政年份:
    1993
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant
Interactive Visualization of Self-Organizing Cellular Automata
自组织元胞自动机的交互式可视化
  • 批准号:
    9212699
  • 财政年份:
    1992
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Equipment 1990
数学科学研究设备1990
  • 批准号:
    9004628
  • 财政年份:
    1990
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Interacting Particle Systems and Random Cellular Automata
数学科学:相互作用的粒子系统和随机元胞自动机
  • 批准号:
    8922876
  • 财政年份:
    1990
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Infinite Particle Systems and RelatedModels
数学科学:无限粒子系统及相关模型
  • 批准号:
    8700831
  • 财政年份:
    1987
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Infinite Particle Systems and RelatedModels
数学科学:无限粒子系统及相关模型
  • 批准号:
    8320549
  • 财政年份:
    1984
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant

相似海外基金

Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Moral Experience of Families in the Context of Trisomy 13 and 18: Presenting the Results of a Scoping Review
13 号和 18 号三体症背景下家庭的道德体验:介绍范围界定审查的结果
  • 批准号:
    495166
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
Early intervention as a determinant of hearing aid benefit for age-related hearing loss: Results from longitudinal cohort studies
早期干预是助听器对年龄相关性听力损失有益的决定因素:纵向队列研究的结果
  • 批准号:
    10749385
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
Identifying strategies to reveal genetic results over the lifespan
确定揭示一生中遗传结果的策略
  • 批准号:
    10739918
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
FRAMINGHAM HEART STUDY - TASK AREA C - GENETIC RESULTS REPORTING
弗雷明汉心脏研究 - 任务领域 C - 基因结果报告
  • 批准号:
    10974185
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
Collaborative Research: Curating, digitizing and disseminating results from an unparalleled collection of fossil vertebrates from the Late Cretaceous of Madagascar
合作研究:整理、数字化和传播来自马达加斯加白垩纪晚期的无与伦比的脊椎动物化石收藏的结果
  • 批准号:
    2242717
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Explaining automated test agents and their test results
解释自动化测试代理及其测试结果
  • 批准号:
    23K11062
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
  • 批准号:
    2300382
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
Association of D-dimers with Left Ventricular Hypertrophy and Clinical Outcomes in Mild to Moderate Aortic Stenosis: Results from the PROGRESSA Study
D-二聚体与左心室肥厚和轻中度主动脉瓣狭窄临床结果的关联:PROGRESSA 研究结果
  • 批准号:
    495409
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
revAIsor: Revise AI Solutions for Optimal Results
revAIsor:修改人工智能解决方案以获得最佳结果
  • 批准号:
    10075158
  • 财政年份:
    2023
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了