Topics in Predictive and Descriptive Data Mining
预测性和描述性数据挖掘主题
基本信息
- 批准号:0204029
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractPI: Jerry FriedmanDMS-0204029This proposal seeks support for research in predictive and descriptive data mining (DM). Decision tree methods are the most popular predictive DM tools. Research under this grant will investigate ways to overcome their most serious limitation: severe over fitting in the presence of categorical (factorial) predictor variables with very large numbers of values (factors). Cluster analysis is often used as a tool in descriptive DM. In most DM applications a large number of variables are measured on each observation. Usually clustering, if it exists, occurs only within (often small) unknown subsets of all the measured variables. Moreover, individual clusters may represent groupings on (possibly overlapping) variable subsets. The goal is to identify the clustered groups as well as the particular variable subsets on which each one preferentially clusters. Traditional clustering algorithms are not well suited for this task. Research under this grant will investigate new approaches for solving this problem, especially in situations where there are a very large number of measured variables.Data mining is used to discover patterns and relationships in data, with an emphasis on very large data bases. It has had a major impact in business, industry, science, medicine, and most recently homeland security. Data mining activities divide into two types: predictive and descriptive. Predictive DM involves using past observational data from a system to build a mathematical model of that system. The model is used to predict some future unknown property (attribute or variable) of the system, given other properties that will be known in the future. Descriptive DM seeks to construct compact, interpretable summaries of the data in order to understand patterns and relationships, without focusing on the prediction of particular attributes. This research will investigate new methodologies for increasing the power of both descriptive and predictive DM in problems for which they have been traditionally weak.
摘要本提案寻求对预测和描述数据挖掘(DM)研究的支持。决策树方法是最流行的预测决策工具。这项资助下的研究将研究如何克服其最严重的局限性:在具有大量值(因子)的分类(因子)预测变量存在时严重的过度拟合。聚类分析经常被用作描述性DM的一种工具。在大多数DM应用中,每次观测都测量大量变量。通常,如果存在聚类,则只发生在所有测量变量的未知子集内(通常很小)。此外,单个集群可以表示(可能重叠的)变量子集上的分组。目标是确定群集组以及每个组优先聚集的特定变量子集。传统的聚类算法不适合这个任务。这项资助下的研究将研究解决这一问题的新方法,特别是在有大量测量变量的情况下。数据挖掘用于发现数据中的模式和关系,重点是非常大的数据库。它对商业、工业、科学、医学以及最近的国土安全产生了重大影响。数据挖掘活动分为两种类型:预测性和描述性。预测性决策包括使用一个系统过去的观测数据来建立该系统的数学模型。该模型用于预测系统的某些未来未知的属性(属性或变量),给出未来已知的其他属性。描述性数据挖掘旨在构建紧凑的、可解释的数据摘要,以便理解模式和关系,而不关注特定属性的预测。这项研究将探讨新的方法,以增加描述性和预测性DM在传统上薄弱的问题中的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerome Friedman其他文献
Carbamazepine in the treatment of trigeminal neuralgia
- DOI:
10.14219/jada.archive.1967.0450 - 发表时间:
1967-05-01 - 期刊:
- 影响因子:
- 作者:
Abbe J. Selman;Jerome Friedman;Richard Chambers - 通讯作者:
Richard Chambers
Can You Win Everything with A Lottery Ticket?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jerome Friedman - 通讯作者:
Jerome Friedman
Apical Fenestration: Solution to Recalcitrant Pain in Root Canal Therapy
- DOI:
10.14219/jada.archive.1968.0300 - 发表时间:
1968-10-01 - 期刊:
- 影响因子:
- 作者:
Stanley B. Chestner;Robert A. Heyman;Abbe J. Selman;Jerome Friedman - 通讯作者:
Jerome Friedman
Graphics for the Multivariate Two-Sample Problem
多元二样本问题的图形
- DOI:
10.1080/01621459.1981.10477643 - 发表时间:
1981 - 期刊:
- 影响因子:3.7
- 作者:
Jerome Friedman;Lawrence C. Rafsky - 通讯作者:
Lawrence C. Rafsky
Prediction of Secondary School Students’ Alcohol Addiction using Random Forest
使用随机森林预测中学生酒精成瘾
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fabio Pagnotta;H. M. Amran;T. Hastie;R. Tibshirani;Jerome Friedman - 通讯作者:
Jerome Friedman
Jerome Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerome Friedman', 18)}}的其他基金
New Directions in Predictive Learning for Classification
分类预测学习的新方向
- 批准号:
9704431 - 财政年份:1997
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Mathematical Sciences: Adaptive Spatial Regression and Classification
数学科学:自适应空间回归和分类
- 批准号:
9403804 - 财政年份:1994
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
- 批准号:
EP/X022935/2 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Fellowship
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Development of a predictive biomarker for Parkinson's disease
帕金森病预测生物标志物的开发
- 批准号:
MR/Y019415/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Creating healthier homes for children with asthma:Developing a predictive model for environmental
为哮喘儿童创建更健康的家庭:开发环境预测模型
- 批准号:
2908612 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Studentship
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
- 批准号:
2339054 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
- 批准号:
EP/Y028473/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Fellowship














{{item.name}}会员




