Collaborative Research: Homological Invariants in Crystallography
合作研究:晶体学中的同源不变量
基本信息
- 批准号:0204845
- 负责人:
- 金额:$ 15.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0204823, DMS-0204845Principal Investigators: Benji Fisher, David Rabson A B S T R A C TFisher and Rabson are classifying the symmetry types of quasicrystalsin two and three dimensions and studying the physical consequences ofthese symmetries. The classification generalizes the work begun inthe nineteenth century on space groups of crystals. The investigatorsfollow the Fourier-space approach to crystallography, which has theadvantage of avoiding space groups in higher dimensions. Thus theclassification starts from the known list of finite subgroups of theorthogonal groups O(2) and O(3). They introduce techniques of groupcohomology, some of which have long been used in "direct space," tothe Fourier-space formulation. These techniques lead to boththeoretical simplifications and efficient computational methods. Oneimportant application of these ideas is the description of certaingauge invariants in terms of group homology. The two simplest typesof homology class are connected with known physical phenomena:systematic extinctions in diffraction patterns and crossing ofelectronic bands ("band sticking"). The next simplest type firstoccurs in a rank-five tetragonal modulated crystal and should beconnected with some similar phenomenon. Tiling models are produced,and the ideas are also extended to magnetic and color groups.Crystallography underlies and informs much of physics, chemistry, andgeology. The present research has applications to recent experimentsin liquid crystals (related to the popular LCD displays onwristwatches and other electronic equipment), plasmas, and modulatedcrystals, highly symmetric systems that cannot be described by theclassical theory of crystals. Ever since 1784, when the French abbotRene Just Hauy deduced the microscopic structure of crystals, it hadbeen believed impossible for a crystal to have the symmetries of anicosahedron (or a soccer ball). Precisely 200 years later, suchmaterials, called "quasicrystals," were discovered, and much researchhas ensued into their properties. Quasicrystals possess strangeelectronic and physical properties and have already found applicationas high-quality, non-stick coatings on electrosurgical blades. Thepresent research aims to classify the symmetry types of crystals andto study physical properties associated with these symmetries.This project is funded jointly by the Division of Mathematical Sciencesand the Division of Materials Research.
提案: DMS-0204823、DMS-0204845主要研究者:Benji Fisher、大卫·拉布森 A B S T R A C T Fisher和Rabson正在对二维和三维的拟物质的对称性类型进行分类,并研究这些对称性的物理后果。 这种分类概括了世纪开始的关于晶体空间群的工作。 晶体学的傅立叶空间方法,其优点是避免了更高维度的空间群。 因此,分类从已知的正交群O(2)和O(3)的有限子群列表开始。 他们介绍了技术的groupcosomology,其中一些已长期用于“直接空间”,以傅立叶空间制定。 这些技术导致boththeoretical简化和有效的计算方法。 这些思想的一个重要应用是用群同调来描述某些度量不变量。 同调类的两种最简单的类型与已知的物理现象有关:衍射图样中的系统衍射和电子带的交叉(“带粘滞”)。 下一个最简单的类型首先出现在五阶四倍频调制晶体中,并且应该与一些类似的现象有关。 瓷砖模型的产生,以及想法也扩展到磁性和颜色组。晶体学的基础和通知很多物理,化学和地质学。目前的研究已经应用到最近的实验在液晶(与流行的液晶显示器上的手表和其他电子设备),等离子体,和调制晶体,高度对称的系统,不能描述的经典理论的晶体。 自从1784年法国修道院院长勒内·茹斯特·豪伊推导出晶体的微观结构以来,人们一直认为晶体不可能具有二十面体(或足球)的对称性。 200年后,这种被称为“准晶体”的材料被发现了,并且对其性质进行了大量的研究。 准晶具有奇特的电子和物理性质,已经在电外科手术刀片上作为高质量的不粘涂层得到应用。 本研究的目的是对晶体的对称性类型进行分类,并研究与这些对称性相关的物理性质,该项目由数学科学部和材料研究部联合资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Rabson其他文献
David Rabson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Rabson', 18)}}的其他基金
REU Site: Applied Physics at the University of South Florida
REU 站点:南佛罗里达大学应用物理
- 批准号:
1852269 - 财政年份:2019
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Scholarships Reinforcing Computational Physical Science
加强计算物理科学的奖学金
- 批准号:
0631023 - 财政年份:2006
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854703 - 财政年份:2019
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854748 - 财政年份:2019
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854683 - 财政年份:2019
- 资助金额:
$ 15.1万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652630 - 财政年份:2007
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652633 - 财政年份:2007
- 资助金额:
$ 15.1万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652620 - 财政年份:2007
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
US-France Cooperative Research: Algebraic and Homological Methods in Low Dimensional Topology
美法合作研究:低维拓扑中的代数和同调方法
- 批准号:
0340575 - 财政年份:2004
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: Homological Methods in Crystallography
合作研究:晶体学中的同源方法
- 批准号:
0204823 - 财政年份:2002
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Travel to Attend: a Research Symposium on Homological & Combinatorial Techniques in Group Theory, Durham, England, Sept 6-16, 1977
前往参加:同源研究研讨会
- 批准号:
7720136 - 财政年份:1977
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Research on Groups, Rings, and Homological Algebra
群、环和同调代数的研究
- 批准号:
68P8425 - 财政年份:1968
- 资助金额:
$ 15.1万 - 项目类别: