FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
基本信息
- 批准号:0652630
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main aim of this collaborative project is an in-depth study of the homological mirror symmetry conjecture. Auroux, Katzarkov, Kontsevich, Orlov and Seidel will lead a concerted effort to formulate and understand homological mirror symmetry in systematic manner, and extend it to varieties of general type and to noncommutative varieties. This will require some foundational work in homological algebra, noncommutative geometry, and symplectic geometry. Another goal is to investigate applications of mirror symmetry to classical problems in algebraic geometry (for example studying the rationality of certain algebraic varieties) and symplectic topology (in particular, Lagrangian submanifolds). From a wider perspective, the project aims to provide a mathematical counterpart to some recent advances in theoretical physics. The contribution that mathematics can make is to verify the soundness and consistency of physical intuition, and to prepare the general ground on which further development can occur. This is particularly important in those situations where developments in physics suggest the presence of deep and complex structures, which are difficult to detect by direct experiment. At the same time, this effort will make it possible to answer some purely mathematical (geometric) questions, some of which have been open for a long time. The collaborative effort will be carried out through regular meetings and workshops, and by fostering interaction between leading experts in the field and younger mathematicians (graduate students and postdocs); dissemination of knowledge in this rapidly evolving area of mathematics will be facilitated by regularly held winter and summer schools and conferences.
这个合作项目的主要目的是深入研究同调镜像对称猜想。Auroux,Katzarkov,Kontsevich,奥尔洛夫和Seidel将领导一个协调一致的努力,制定和理解同调镜像对称系统的方式,并将其扩展到一般类型的品种和非交换品种。这需要在同调代数、非交换几何和辛几何方面做一些基础工作。另一个目标是研究镜像对称在代数几何(例如研究某些代数簇的合理性)和辛拓扑(特别是拉格朗日子流形)中的经典问题中的应用。从更广泛的角度来看,该项目旨在为理论物理学的一些最新进展提供数学对应。数学所能做的贡献是证实物理直观的可靠性和一致性,并为进一步的发展奠定基础。这在物理学的发展表明存在难以通过直接实验检测的深层和复杂结构的情况下尤其重要。与此同时,这一努力将使人们有可能回答一些纯粹的数学(几何)问题,其中一些已经开放了很长一段时间。将通过定期会议和讲习班开展合作,并促进该领域领先专家与年轻数学家(研究生和博士后)之间的互动;定期举办的冬季和夏季学校和会议将促进这一快速发展的数学领域的知识传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Auroux其他文献
Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
- DOI:
10.1007/s00029-024-00988-6 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov - 通讯作者:
Ludmil Katzarkov
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves THANKSREF="*" ID="*" DA was partially supported by NSF grant DMS-0244844. LK was partially supported by NSF grant DMS-0600800 and NSA grant H98230-04-1-0038. DO was partially supported by the Weyl Fund, the Civilian Research Development Foundation (CRDF grant No. RUM1-2661-MO-05), the Russian Foundation for Basic Research (No. 05-01-01034), and the Russian Science Support Foundation.
- DOI:
10.1007/s00222-006-0003-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux;Ludmil Katzarkov;Dmitri Orlov - 通讯作者:
Dmitri Orlov
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
- DOI:
10.1007/s00222-014-0561-9 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux - 通讯作者:
Denis Auroux
Khovanov–Seidel quiver algebras and bordered Floer homology
- DOI:
10.1007/s00029-012-0106-2 - 发表时间:
2012-10-11 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli - 通讯作者:
Stephan M. Wehrli
Denis Auroux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Auroux', 18)}}的其他基金
Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
- 批准号:
2202984 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
- 批准号:
1933415 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
- 批准号:
1406274 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1264662 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
- 批准号:
1007177 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密顿微分同胚群中的几何和代数结构
- 批准号:
0706976 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
- 批准号:
0600148 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
- 批准号:
0244844 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant