Calculus of Functors
函子微积分
基本信息
- 批准号:0204969
- 负责人:
- 金额:$ 33.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0204969Thomas G. GoodwillieWe propose to continue our investigations in several versions of "functorial calculus". Each of these is a technique that exploits multirelative connectivity estimates to describe continuous functors in some context in terms of special values; for example a functor of spaces might be recovered from its values at highly connected spaces, or a functor of subspaces of a manifold from its values at low-dimensional subspaces, ora functor of real inner product spaces from its values at high-dimensional spaces. Part of the proposal is to refine the purely homotopy-theoretic version of "calculus". Other parts are concerned with combining several versions and applying them to various questions in both high- andlow-dimensional differential topology.Each "functorial calculus" mentioned above is so called because of a not-entirely-fanciful resemblance to the ordinary diferential calculus of Newton and Leibniz. Sometimes a fact about numbers is best proved by placing it in a context where the number is part of a huge family ofnumbers -- a numerical function. Properties of the function then lead, by general theorems of calculus that may seem a bit magical when encountered for the first time, to a computation of the number. So it is here: sometimes a fact about some geometrically defined object is best proved byplacing it in a context where the object is part of a huge family of such objects -- a functor -- and using some magic of a more modern kind. This analogy may show something of the flavor of the work; the content is harder to get at, because most of the "geometric" objects in question areconnected to everyday reality by rather long chains of abstract ideas.
DMS-0204969Thomas G.我们建议继续我们的调查在几个版本的“函演算”。这些都是一种技术,利用多相对连通性估计来描述连续函子在某些情况下的特殊值;例如,空间的函子可以从其在高连通空间的值中恢复,或者流形的子空间的函子可以从其在低维子空间的值中恢复,或者真实的内积空间的函子可以从其在高维空间的值中恢复。部分建议是完善纯粹同伦理论版本的“微积分”。其他部分涉及到结合几个版本,并将其应用于各种问题,在高-和低-维微分拓扑。每个“函演算”上面提到的是所谓的,因为一个不完全是幻想的相似之处,普通微分演算牛顿和莱布尼茨。有时候,一个关于数字的事实最好的证明是把它放在一个上下文中,这个数字是一个巨大的数字家族的一部分-一个数字函数。函数的性质,然后导致,一般定理的微积分,可能似乎有点神奇时,遇到的第一次,以计算的数量。所以它是这样的:有时候,一个关于几何定义的对象的事实,最好的证明方法是把它放在一个上下文中,这个对象是一个庞大的此类对象家族的一部分--一个函子--并使用一些更现代的魔法。这种类比可能显示出作品的某种风格;内容更难理解,因为大多数被讨论的“几何”物体都是通过相当长的抽象概念链与日常现实联系在一起的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Goodwillie其他文献
Thomas Goodwillie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Goodwillie', 18)}}的其他基金
Metastable Pseudoisotopy, G-Manifolds, and Functor Calculus
亚稳态赝同位素、G 流形和函子微积分
- 批准号:
1608259 - 财政年份:2016
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Manifolds and Homotopy Theory
数学科学:流形和同伦理论
- 批准号:
9509744 - 财政年份:1995
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Manifolds and Algebraic K-Theory
数学科学:流形和代数 K 理论
- 批准号:
9108542 - 财政年份:1992
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic and Geometric Topology
数学科学:代数和几何拓扑
- 批准号:
8806444 - 财政年份:1988
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Calculus of Funtors and Pseudo-Isotopy Theory
数学科学:函子微积分和伪同位素理论
- 批准号:
8717084 - 财政年份:1987
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
Mathematical Sciences: Calculus of Functors and Pseudo-Isotopy Theory
数学科学:函子微积分和伪同位素理论
- 批准号:
8604525 - 财政年份:1986
- 资助金额:
$ 33.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic K-Theory of Rings and Spaces and Cyclic Homology
数学科学:环和空间的代数 K 理论以及循环同调
- 批准号:
8308248 - 财政年份:1983
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
相似海外基金
RUI: Calculus of Functors and Applications in Homotopy Theory
RUI:函子微积分及其在同伦理论中的应用
- 批准号:
1709032 - 财政年份:2017
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
RUI: Koszul duality of operads and the calculus of functors
RUI:操作数的 Koszul 对偶性和函子的微积分
- 批准号:
1308933 - 财政年份:2013
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
1144149 - 财政年份:2011
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
Topology of the embedding spaces via configuration space integrals, operads and the calculus of functors
通过配置空间积分、操作数和函子微积分实现嵌入空间的拓扑
- 批准号:
23840015 - 财政年份:2011
- 资助金额:
$ 33.53万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0967649 - 财政年份:2010
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0968251 - 财政年份:2010
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0967061 - 财政年份:2010
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0968046 - 财政年份:2010
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0968221 - 财政年份:2010
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant
RUI: Embedding spaces via calculus of functors and generalizations of finite type invariants
RUI:通过函子演算和有限类型不变量的推广来嵌入空间
- 批准号:
0805406 - 财政年份:2008
- 资助金额:
$ 33.53万 - 项目类别:
Standard Grant