NER: Nanoscale Molecular Spintronic Materials and Devices

NER:纳米级分子自旋电子材料和器件

基本信息

  • 批准号:
    0204978
  • 负责人:
  • 金额:
    $ 8.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2004-01-31
  • 项目状态:
    已结题

项目摘要

This proposal was submitted in response to the Nanoscale Science and Engineering Initiative, Program Solicitation NSF 01-157, in the NER category. The proposal focuses on (a). the fabrication of planar spin-valve and light-emitting devices using ferromagnetic eletrodes and pi-conjugated materials; (b) the study of organic/inorganic interfaces and the effect of the interfaces on spin-transport. Although spin-dependent effects have been widely studied in a variety of metals and conventional semiconductors, very little has been done in organic semiconductors for nanoscale device applications. There are two main advantages for using organic semiconductors, in particular pi-conjugated semiconductors for spin-electronics. Firstly, the spin relaxation time in these materials is relatively long, typically of the order of a microsecond at room temperature. This is caused by the light atoms from which these semiconductors are made and the small hyperfine interaction of the pi-electron wave function. The second advantage is that the main mechanism for carrier injection into organic semiconductors is by tunneling, which preserves spin states, so that the acute problem of conductance mismatch between the ferromagnetic spin aligner and the semiconductor is less troublesome. In addition, organic materials offer a wide range of work function values so that the tunnel barrier can be relatively easily engineered for spin-dependent low tunneling resistance, which is essential for high-density information storage and memory applications. Our feasibility study consists of two types of nanoscale devices. The first type is the planar spin-valve devices using pi-conjugated materials as a spacer. The objective is to explore low tunnel barrier spin-valves with high magnetoresistance. The second type is the organic spin light-emitting devices, where the electroluminescence emission will be modulated by an external magnetic field. The improved emitted light efficiency and magnetic field sensitivity are anticipated. These two types of devices involve with new material fabrication, fine lithography, and new material processing, which are highly non-trivial and of high risk. The PI and co-PI (Shi and Vardney) have expertise in magnetic tunnel junction materials and nanoscale device fabrication, polymer synthesis, organic crystal growth, magneto-transport, optics, and magneto-optics. Thus the two graduate students and two undergraduate students participating in this project will be well-trained in a rather interdisciplinary field.
该提案是响应纳米尺度科学与工程倡议,项目招标NSF 01-157,在NER类别。该提案的重点是(a)利用铁磁电极和π共轭材料制造平面自旋阀和发光器件;(b)有机/无机界面的研究以及界面对自旋输运的影响。尽管自旋依赖效应已经在各种金属和传统半导体中得到了广泛的研究,但在有机半导体中用于纳米级器件的研究却很少。使用有机半导体,特别是用于自旋电子学的π共轭半导体有两个主要优点。首先,这些材料中的自旋弛豫时间相对较长,在室温下通常为微秒数量级。这是由制造这些半导体的光原子和π电子波函数的小的超精细相互作用引起的。第二个优点是,载流子注入有机半导体的主要机制是通过隧道,这保留了自旋态,因此铁磁自旋对准器和半导体之间电导不匹配的严重问题就不那么麻烦了。此外,有机材料提供了广泛的工作功能值,因此隧道势垒可以相对容易地设计为依赖自旋的低隧道阻力,这对于高密度信息存储和记忆应用至关重要。我们的可行性研究包括两种类型的纳米级器件。第一种是平面自旋阀装置,采用π共轭材料作为间隔片。目的是探索具有高磁阻的低隧道势垒自旋阀。第二种类型是有机自旋发光器件,其电致发光发射将由外部磁场调制。期望提高发射光效和磁场灵敏度。这两种类型的设备涉及新材料制造,精细光刻和新材料加工,这是高度不平凡和高风险的。PI和co-PI (Shi和Vardney)在磁性隧道结材料和纳米级器件制造,聚合物合成,有机晶体生长,磁输运,光学和磁光学方面拥有专业知识。因此,参与这个项目的两名研究生和两名本科生将在一个相当跨学科的领域受到良好的训练。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Shi其他文献

The utility of Hopkins verbal learning test (Chinese version) for screening dementia and mild cognitive impairment in a Chinese population
霍普金斯言语学习测试(中文版)在中国人群痴呆和轻度认知障碍筛查中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Shi;Jinzhou Tian;M. Wei;Yingchun Miao;Yongyan Wang
  • 通讯作者:
    Yongyan Wang
Effects and Mechanisms of Curcumin on Spatial Learning and Memory Improvment in APPswe/PS1dE9 Mice
姜黄素对 APPswe/PS1dE9 小鼠空间学习和记忆改善的影响及机制
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shucui Jiang;Caixin Su;Ruisheng Li;Hong Wang;Ying Ren;Haiyun Sun;Jinduo Yang;Jianning Sun;Jing Shi
  • 通讯作者:
    Jing Shi
Concept Learning through Deep Reinforcement Learning with Memory-Augmented Neural Networks
通过深度强化学习和记忆增强神经网络进行概念学习
  • DOI:
    10.1016/j.neunet.2018.10.018
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Jing Shi;Jiaming Xu;Yiqun Yao;Bo Xu
  • 通讯作者:
    Bo Xu
Magnetic anisotropy of the single crystalline ferromagnetic insulator Cr2Ge2Te6
单晶铁磁绝缘体 Cr2Ge2Te6 的磁各向异性
  • DOI:
    10.7567/jjap.55.033001
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xiao Zhang;Yuelei Zhao;Qi Song;Shuang Jia;Jing Shi;Wei Han
  • 通讯作者:
    Wei Han
Analysis on building sector’s energy consumption and mitigation potential under SSP2
SSP2下建筑行业的能源消耗和减排潜力分析
  • DOI:
    10.1016/j.egypro.2017.12.179
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huan Wang;Nan Li;Wenying Chen;Jing Shi
  • 通讯作者:
    Jing Shi

Jing Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Shi', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of Cryogen-Free Magnetometer for Investigating Novel Magnetic/Superconducting Systems
设备:MRI:第 1 道采购无冷冻剂磁力计,用于研究新型磁/超导系统
  • 批准号:
    2318424
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Static and dynamic spin properties in antiferromagnetic thin films and heterostructures
反铁磁薄膜和异质结构的静态和动态自旋特性
  • 批准号:
    2203134
  • 财政年份:
    2022
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Continuing Grant
Exploring van der Waals heterostructure magnetic devices for high-efficiency and high-density memory
探索用于高效高密度存储器的范德华异质结构磁性器件
  • 批准号:
    2051450
  • 财政年份:
    2021
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
EAGER: External Magnetic Field Assisted Laser Metal Deposition of Highly Oriented Crystalline Ni-Based Alloys
EAGER:外部磁场辅助激光金属沉积高取向晶态镍基合金
  • 批准号:
    1746147
  • 财政年份:
    2017
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Material Microstructure Evolution and Fatigue Life of High Strength Metal Components Produced by Laser Melting Additive Process
合作研究:模拟激光熔化增材工艺生产的高强度金属部件的材料微观结构演变和疲劳寿命
  • 批准号:
    1563002
  • 财政年份:
    2016
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Graphene-based all-proximity-coupled quantum spintronic devices
基于石墨烯的全邻近耦合量子自旋电子器件
  • 批准号:
    1610447
  • 财政年份:
    2016
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Ferrimagnetic Insulator Enabled Quantum Spintronic Effects and Devices
亚铁磁绝缘体实现量子自旋电子效应和器件
  • 批准号:
    1202559
  • 财政年份:
    2012
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Synthesis and characterization of half-metallic ferromagnetic oxides for organic semiconductor spintronic devices
有机半导体自旋电子器件用半金属铁磁氧化物的合成与表征
  • 批准号:
    0802214
  • 财政年份:
    2008
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Continuing Grant

相似海外基金

ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Nanoscale engineering of isolated molecular wires for nanoscale devices
用于纳米级器件的分离分子线的纳米级工程
  • 批准号:
    2893835
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Studentship
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227128
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227135
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Biosensing - Engineering Molecular or Nanoscale Signal Transducers for High-Performance Bio-Detection
REU 网站:生物传感本科生研究经验 - 工程分子或纳米级信号传感器用于高性能生物检测
  • 批准号:
    2243754
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
CAREER: Molecular Tools to Tune the Structure-Function Properties of Nanoscale Objects by Reconfiguration of pi-Conjugated Superstructures
职业:通过重新配置 pi 共轭超结构来调整纳米级物体的结构功能特性的分子工具
  • 批准号:
    2401869
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Continuing Grant
CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
  • 批准号:
    2240000
  • 财政年份:
    2023
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
Development of next-generation quantum dynamical simulation methods with applications to charge and exciton transport in nanoscale molecular materials
开发下一代量子动力学模拟方法,应用于纳米级分子材料中的电荷和激子传输
  • 批准号:
    2729533
  • 财政年份:
    2022
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Studentship
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208260
  • 财政年份:
    2022
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Nano-Projectile Secondary Ion Mass Spectrometry for accurate molecular analysis at the nanoscale
LEAPS-MPS:纳米弹丸二次离子质谱法,用于纳米尺度的精确分子分析
  • 批准号:
    2213444
  • 财政年份:
    2022
  • 资助金额:
    $ 8.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了