CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
基本信息
- 批准号:2240000
- 负责人:
- 金额:$ 54.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant supports the development of a new nanofabrication approach based on self-assembly of nanoscale materials guided by DNA molecules. Nature has evolved the ability to self-assemble nanomaterials into complex three-dimensional geometries in a sustainable bottom-up way. In contrast, most human-made devices are assembled through a rational top-down process which is highly inflexible, expensive, and unsustainable. This research seeks to combine the strengths of natural biomolecular self-assembly and rational engineering by encoding molecular recognition into high-performance materials. The goal is to develop a new nanomanufacturing technology to fabricate complex nanoscale devices, without using expensive semiconductor factories and methods. The new manufacturing approach enables a diverse range of applications, from tiny sensors with unprecedented sensitivity to electronic devices that can self-evolve. The research is integrated with an educational and outreach program that introduces self-assembly concepts to students from K-12 to graduate level and trains a workforce for versatile, sustainable, affordable, and accessible future nanomanufacturing.Despite decades of development, molecular self-assembly has not yet yielded a disruptive nanoscale manufacturing approach. This is largely due to two unsolved challenges: (i) the lack of programmable complexity in achievable architectures built from diverse, high-performance nanomaterials such as quantum dots and nanowires and (ii) the lack of scalable yet precise methods for integrating these architectures with existing devices. This research aims to meet both challenges by maximizing the amount of molecular recognition encoded into nanoscale material components and macroscale devices. The solution is to place multiple unique DNA sequences onto precise locations on surfaces of nanoscale and macroscale components. For nanoscale components this is achieved by wrapping nanoparticles into DNA origami “suits” or boxes via programming nanoparticle–DNA interactions, such as metal-purine base, electrostatic forces, DNA-DNA pairing, etc. These arrays of multiple unique DNA strands serve collectively as molecular zip codes allowing nanoscale components to autonomously recognize and bind to each other. For macroscale surfaces this is achieved by patterning with conventional optical lithography and then performing DNA origami conjugation with standard amine–carboxyl chemistry or with new molecular barcoding approaches to anchor thousands of unique single-stranded DNA in precise positions. This patterned macroscale device surface provides a multitude of docking sites for the architectures self-assembled from nanoparticles yielding the final device. By studying and understanding the thermodynamics of self-assembly processes, nanoscale structures, experimental parameters, and performance of the resulting devices, this research pushes the limits of what is possible to fabricate with molecular programming.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(Career)基金支持开发一种基于DNA分子引导的纳米级材料自组装的新型纳米制造方法。大自然已经进化出以可持续的自下而上的方式将纳米材料自组装成复杂的三维几何形状的能力。相比之下,大多数人造设备是通过一种理性的自上而下的过程组装的,这种过程高度不灵活,昂贵且不可持续。本研究旨在结合天然生物分子自组装和合理工程的优势,将分子识别编码到高性能材料中。目标是开发一种新的纳米制造技术来制造复杂的纳米级器件,而无需使用昂贵的半导体工厂和方法。新的制造方法可以实现各种各样的应用,从具有前所未有灵敏度的微型传感器到可以自我进化的电子设备。该研究与教育和推广计划相结合,向从K-12到研究生阶段的学生介绍自组装概念,并为多功能、可持续、经济实惠和可获得的未来纳米制造培训劳动力。尽管经过数十年的发展,分子自组装尚未产生颠覆性的纳米级制造方法。这主要是由于两个尚未解决的挑战:(i)在由各种高性能纳米材料(如量子点和纳米线)构建的可实现架构中缺乏可编程的复杂性;(ii)缺乏可扩展但精确的方法将这些架构与现有设备集成。本研究旨在通过最大限度地将分子识别编码到纳米级材料组件和宏观尺度器件中来应对这两个挑战。解决方案是将多个独特的DNA序列放置在纳米级和宏观级组件表面的精确位置上。对于纳米级组件,这是通过编程纳米粒子-DNA相互作用,如金属-嘌呤碱基、静电力、DNA-DNA配对等,将纳米粒子包裹到DNA折纸“套装”或盒子中来实现的。这些由多个独特DNA链组成的阵列共同充当分子邮政编码,使纳米级组件能够自主识别并相互结合。对于宏观表面,这是通过传统的光学光刻来实现的,然后用标准的胺-羧基化学或新的分子条形码方法进行DNA折纸偶联,将数千个独特的单链DNA固定在精确的位置上。这种有图案的宏观设备表面为纳米颗粒自组装的结构提供了大量的对接点,从而产生最终的设备。通过研究和理解自组装过程的热力学、纳米级结构、实验参数和最终器件的性能,本研究推动了分子编程制造的极限。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grigory Tikhomirov其他文献
Dual-enzyme activated theranostic nanoparticles for image-guided glioblastoma therapy
- DOI:
10.1038/s41598-025-97775-w - 发表时间:
2025-04-19 - 期刊:
- 影响因子:3.900
- 作者:
Zahra Shokri Varniab;Edwin Chang;Jie Wang;Ramesh Duwa;Vidyani Suryadevara;Wei Wu;Manoj Kumar;Tie Liang;Zubeda Khatoon;Goreti Ribeiro Morais;Robert Falconer;Yifeng Shi;Grigory Tikhomirov;Kerem Nernekli;Laura Jean Pisani;Heike Elisabeth Daldrup-Link - 通讯作者:
Heike Elisabeth Daldrup-Link
Grigory Tikhomirov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grigory Tikhomirov', 18)}}的其他基金
Self-Assembling Volumetric Optical Metamaterials
自组装体积光学超材料
- 批准号:
2211148 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Three-dimensional super-resolution light microscopy of thick, unprocessed biological samples
职业:厚的、未处理的生物样品的三维超分辨率光学显微镜
- 批准号:
2404769 - 财政年份:2023
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
CAREER: Reliability of Three-dimensional Interconnects for Heterogeneous Integration: An Integrated Experimental and Modeling Study
职业:异构集成三维互连的可靠性:综合实验和建模研究
- 批准号:
2144033 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
CAREER: Three-Dimensional Modeling and Digital Repatriation of Arctic Indigenous Heritage in the Bering Strait Region of Alaska
职业:阿拉斯加白令海峡地区北极土著遗产的三维建模和数字归还
- 批准号:
2327574 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Standard Grant
CAREER: A Transformative Approach for Teaching and Learning Geometry by Representing and Interacting with Three-dimensional Figures
职业:通过表示三维图形并与之交互来教学和学习几何的变革性方法
- 批准号:
2145517 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
CAREER: Leveraging the Three-Dimensional Multi-Stability from Origami Folding to Synthesize Multi-Functional Material Systems
职业:利用折纸折叠的三维多稳定性来合成多功能材料系统
- 批准号:
2240211 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Standard Grant
CAREER: The Three-Dimensional Structure of the Proton
职业:质子的三维结构
- 批准号:
2143264 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
CAREER: Three-dimensional super-resolution light microscopy of thick, unprocessed biological samples
职业:厚的、未处理的生物样品的三维超分辨率光学显微镜
- 批准号:
2042563 - 财政年份:2021
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
CAREER: Three-Dimensional Modeling and Digital Repatriation of Arctic Indigenous Heritage in the Bering Strait Region of Alaska
职业:阿拉斯加白令海峡地区北极土著遗产的三维建模和数字归还
- 批准号:
2042718 - 财政年份:2021
- 资助金额:
$ 54.54万 - 项目类别:
Standard Grant
CAREER: Predicting Transport, Mixing, and Reaction in Three-dimensional Heterogeneous Fractured Media Across Scales
职业:跨尺度预测三维异质断裂介质中的传输、混合和反应
- 批准号:
2046015 - 财政年份:2021
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant
CAREER: Topological dynamics of three-dimensional active fluids
职业:三维活性流体的拓扑动力学
- 批准号:
2047119 - 财政年份:2021
- 资助金额:
$ 54.54万 - 项目类别:
Continuing Grant