ITR: Scalable Algorithms Enabled by Problem Structure and Applications to Computer Hardware
ITR:通过问题结构和计算机硬件应用实现的可扩展算法
基本信息
- 批准号:0205288
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research involves the discovery and development of scalable algorithms for solving hard computational problems that routinely arise in engineering. In particular, the investigators observe that man-made artifacts have innate structures that make those artifacts tractable for design, synthesis, and verification independent of their absolute size. Artifacts such as the Internet, integrated circuit chips, and large distributed software systems, continue to increase in size at a breath-taking pace. Algorithms that deal with such artifacts (e.g., searching the Internet, synthesizing integrated circuits, or verifying the correctness of software systems) but which are oblivious to their inherent structure and regularity are unable to cope with their ever-increasing complexity. Scalable algorithms, on the other hand, recognize, and take advantage of, the structure and regularity of the objects they manipulate in order to bring computational complexity down. The study and development of scalable algorithms, thus, is essential for maintaining progress in our fast-changing technological world.Despite the fact that many of the computational tasks employed in designing, synthesizing, and verifying human-engineered objects are worst-case NP-hard, such objects continue to increase in complexity and are routinely made and deployed. Well-known examples range from aircraft crew scheduling to microprocessor verification and the routing of field-programmable gate arrays, yet the sheer complexity of problem instances often defies modern solution methods. Reuse of intellectual property does not always imply reductions of computational problem instances to smaller ones, and even when such reductions are applied they may lead to sub-optimality's. The ability to solve large instances of hard problems is critical to the design of leading-edge computer hardware, and instance size will increase rapidly with advances in silicon lithography (EUV, X-ray, electron beam, etc.), nano-manufacturing (molecular electronics) and integration complexity (system-on-a-chip). Therefore, empirical improvements in solving mainstream NP-complete problems are critical to sustained increase in sophistication of Information Technologies. This project aims at significantly extending the performance envelope of practical algorithms in order to handle very large hard problem instances through intelligent utilization of problem structure. The investigators are pursuing this goal through generic and fundamental results with applicability beyond currently popular worst-case bounds that are at variance with empirically observed performance.
这项研究涉及发现和开发可扩展的算法,用于解决工程中经常出现的困难计算问题。特别是,研究人员观察到,人造文物具有先天的结构,使这些文物易于设计,合成和验证独立于其绝对大小。人工制品,如互联网、集成电路芯片和大型分布式软件系统,继续以惊人的速度增长。处理这样的伪像的算法(例如,搜索互联网、合成集成电路或验证软件系统的正确性),但却不知道它们的内在结构和规律性,无法科普它们不断增加的复杂性。另一方面,可伸缩算法识别并利用它们操纵的对象的结构和规律性,以降低计算复杂性。因此,可扩展算法的研究和开发对于在快速变化的技术世界中保持进步至关重要。尽管在设计、合成和验证人类工程物体中使用的许多计算任务是最坏情况下的NP-难,但这些物体的复杂性不断增加,并且经常被制造和部署。众所周知的例子包括从机组人员调度到微处理器验证和现场可编程门阵列的路由,但问题实例的复杂性往往违背现代解决方法。知识产权的重用并不总是意味着将计算问题实例减少到更小的实例,即使应用这种减少,它们也可能导致次优。解决大规模困难问题的能力对于前沿计算机硬件的设计至关重要,随着硅光刻技术(EUV、X射线、电子束等)的进步,实例大小将迅速增加,纳米制造(分子电子学)和集成复杂性(片上系统)。因此,解决主流NP完全问题的经验改进对于信息技术复杂性的持续增长至关重要。该项目旨在通过智能利用问题结构来显着扩展实际算法的性能范围,以处理非常大的困难问题实例。研究人员正在追求这一目标,通过通用的和基本的结果,适用性超出目前流行的最坏情况的界限,是在与经验观察到的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karem Sakallah其他文献
Karem Sakallah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karem Sakallah', 18)}}的其他基金
CPA-SEL: Collaborative Research: Trace-Driven Verification of Multithreaded Software
CPA-SEL:协作研究:多线程软件的跟踪驱动验证
- 批准号:
0810865 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Contextual Investigation of Constraint-Based Dynamic Scheduling
基于约束的动态调度的情境研究
- 批准号:
0705103 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
An Investigation of Boolean Approaches to Physical Design Problems
物理设计问题的布尔方法研究
- 批准号:
9971142 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Timing Issues in the Design of Digital Systems
数字系统设计中的时序问题
- 批准号:
9404632 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Timing Verification and Optimal Clocking of Latch-Controlled Synchronous Digital Circuits
锁存器控制同步数字电路的时序验证和最佳时钟
- 批准号:
9014058 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
- 批准号:
2330054 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
- 批准号:
2327456 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
- 批准号:
2238486 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2343869 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2341725 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Robust and scalable algorithms for learning hidden structures in sparse network data with the aid of side information
借助辅助信息学习稀疏网络数据中隐藏结构的鲁棒且可扩展的算法
- 批准号:
2311024 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant