An Investigation of Boolean Approaches to Physical Design Problems
物理设计问题的布尔方法研究
基本信息
- 批准号:9971142
- 负责人:
- 金额:$ 38.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Boolean Satisfiability problem (SAT) lies at the core of manycomputational tasks in the field of design automation. While SAT has thedistinction of being the first member of the NP-complete class, recentadvances in search pruning algorithms have yielded a crop of powerful SATsolvers capable of tackling problems involving tens of thousands ofvariables and millions of constraints. This project is exploring theapplication of the particularly effective GRASP SAT engine to exactly modeland solve a class of physical design problems that have traditionally beenattacked heuristically. Specifically, research activities being carried outunder this grant include: 1) layout optimization of field-programmable gatearrays (FPGAs) including ways for modeling signal path route patterns,modeling and imposition of timing requirements, and quick determination anddistillation of useful diagnostic information in cases of unroutability,and 2) custom-quality transistor-level cell synthesis through betterestimation of routing area during transistor micro-placement, simultaneousplacement and routing, and exploration of more degrees of freedom in bothplacement and routing. A detailed FPGA routing tool developed in thisproject is being widely distributed.
布尔可满足性问题(SAT)是设计自动化领域中许多计算任务的核心。虽然SAT是NP完全类的第一个成员,但最近在搜索修剪算法方面的进展已经产生了一系列强大的SAT求解器,能够处理涉及数万个变量和数百万个约束的问题。该项目正在探索特别有效的GRASP SAT引擎的应用,以精确建模和解决一类传统上一直受到攻击的物理设计问题。具体而言,利用该赠款开展的研究活动包括:1)现场可编程门阵列(FPGA)的布局优化,包括建模信号路径布线模式、建模和施加时序要求以及在不可布线的情况下快速确定和提取有用的诊断信息的方法,以及2)通过在晶体管微布局期间更好地估计布线面积来定制质量的晶体管级单元合成,布局和布线的灵活性,以及在布局和布线中更多自由度的探索。本项目开发的详细FPGA布线工具正在广泛分发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karem Sakallah其他文献
Karem Sakallah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karem Sakallah', 18)}}的其他基金
CPA-SEL: Collaborative Research: Trace-Driven Verification of Multithreaded Software
CPA-SEL:协作研究:多线程软件的跟踪驱动验证
- 批准号:
0810865 - 财政年份:2008
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Contextual Investigation of Constraint-Based Dynamic Scheduling
基于约束的动态调度的情境研究
- 批准号:
0705103 - 财政年份:2007
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
ITR: Scalable Algorithms Enabled by Problem Structure and Applications to Computer Hardware
ITR:通过问题结构和计算机硬件应用实现的可扩展算法
- 批准号:
0205288 - 财政年份:2002
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Timing Issues in the Design of Digital Systems
数字系统设计中的时序问题
- 批准号:
9404632 - 财政年份:1994
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Timing Verification and Optimal Clocking of Latch-Controlled Synchronous Digital Circuits
锁存器控制同步数字电路的时序验证和最佳时钟
- 批准号:
9014058 - 财政年份:1991
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
相似海外基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
- 批准号:
2350186 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
- 批准号:
2349670 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
CAREER: New Challenges in Analysis of Boolean Functions
职业:布尔函数分析的新挑战
- 批准号:
2239160 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Boolean functions with optimal stability of their cryptographic indicators under restriction of the inputs
在输入限制下具有最佳稳定性的布尔函数
- 批准号:
EP/W03378X/1 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Research Grant
CAREER: Boolean Function Analysis and Its Applications in Computer Science
职业:布尔函数分析及其在计算机科学中的应用
- 批准号:
2141536 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Superlinear lower bounds for Boolean circuits
布尔电路的超线性下界
- 批准号:
545945-2020 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Automating Extended Resolution for the Boolean Satisfiability Problem
布尔可满足性问题的自动化扩展解决方案
- 批准号:
575390-2022 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
- 批准号:
2223126 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant