Models of One-Dimensional Transport

一维传输模型

基本信息

  • 批准号:
    0206733
  • 负责人:
  • 金额:
    $ 16.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Proposal #0206733PI: Thomas ChouInstitution: University of California at Los AngelesTitle: Models of One-Dimensional TransportABSTRACTThe proposed research explores the mathematical and physical aspects of particle transport in one-dimensional channels. Mean-field analysis of Asymmetric Exclusion Processes (ASEP) will be studied analytically and extended to include spatially varying pore-particle interactions and time-dependent behavior. A three-state ASEP will also be developed for modeling proton conduction along water wires. Mean-field and Monte Carlo simulations will be used to obtain steady-state proton currents as functions of both proton concentration and electric potential differences across the pore. Finally, an analysis of interacting particle transport across periodically structured pores will be performed. Analogies with commensurate-incommensurate phase transitions will be explored within Frenkel-Kontorowa type models. Pore transport is a general process vital for separations and catalysis technologies, electrochemical applications, and cell function. In the limit of small, molecular-sized pores connecting two particle reservoirs, the motions of the transported species can be restricted to one dimension. One-dimensional pores are reasonable models for an enormous number of systems including ion channels in cells (which mediate electrolyte balance) and zeolites (minerals that are used to separate hydrocarbon products and mediate chemical reactions). Therefore, theoretical models that can predict the rate at which molecules enter and react within structured one-dimensional channels will aid in the design of molecularly tailored pores in both the industrial and biological settings. Computational simulations will be used to validate the proposed theoretical models.
提案#0206733PI: Thomas choui机构:加州大学洛杉矶分校:一维传输模型(Models of One-Dimensional transport)【摘要】该提议的研究探索了一维通道中粒子传输的数学和物理方面。非对称排斥过程(ASEP)的平均场分析将进行分析研究,并扩展到包括空间变化的孔隙-颗粒相互作用和时间依赖行为。一个三态ASEP也将用于模拟沿水线的质子传导。平均场和蒙特卡罗模拟将用于获得稳态质子电流作为质子浓度和电位差在孔隙中的函数。最后,将进行周期性结构孔隙中相互作用粒子输运的分析。将在Frenkel-Kontorowa型模型中探讨与相应不相称相变的类比。孔隙传输是分离和催化技术、电化学应用和细胞功能的重要过程。在连接两个颗粒储集层的小的、分子大小的孔隙的限制下,被输送物质的运动可以被限制在一个维度上。一维孔隙是大量系统的合理模型,包括细胞中的离子通道(调节电解质平衡)和沸石(用于分离碳氢化合物产物和调节化学反应的矿物质)。因此,能够预测分子进入和在结构一维通道内反应速率的理论模型将有助于在工业和生物环境中设计分子定制孔。计算模拟将用于验证所提出的理论模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Chou其他文献

Physical Chemistry Chemical Physics Physical Chemistry of Biomolecular Motors and Machines Guest Editor: Anatoly Kolomeisky (rice University) Papers Twist–stretch Coupling and Phase Transition during Dna Supercoiling Opening the Arg-glu Salt Bridge in Myosin: Computational Study the Energetics of Al
物理化学 化学物理 生物分子电机和机器的物理化学 客座编辑:Anatoly Kolomeisky(莱斯大学)论文 DNA 超螺旋过程中的扭转拉伸耦合和相变 打开肌球蛋白中的 Arg-glu 盐桥:计算研究 Al 的能量学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Y. Sheinin;Michelle D. Wang;Chem;I. Kaliman;Bella Grigorenko;Maria Shadrina;Del R. Jackson;J. Baker;R. K. Das;A. Kolomeisky;A. Zemel;Alex Mogilner;Phys Chem;Phys;Mark E. Arsenault;Yujie Sun;H. Bau;Yale E;Adrian W. R. Serohijos;Denis Tsygankov;Shubin Liu;T. Elston;N. Dokholyan;F. Posta;Maria R D Orsogna;Tom Chou;Hong Qian;Pei;Jianhua Xing;S. Walcott;Sean X Sun;A. Rogers;J. Driver;P. Constantinou;D. K. Jamison;M. Diehl;A. Larson;E. Landahl;Sarah E. Rice;Changbong Hyeon;Stefan Klumpp;J. Onuchic;Nikolay V Dokholyanz
  • 通讯作者:
    Nikolay V Dokholyanz
An efficient Wasserstein-distance approach for reconstructing jump-diffusion processes using parameterized neural networks
使用参数化神经网络重建跳跃扩散过程的有效 Wasserstein 距离方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingtao Xia;Xiangting Li;Qijing Shen;Tom Chou
  • 通讯作者:
    Tom Chou
2023 Population overcompensation, transients, and oscillations in age-structured Lotka-Volterra models
2023 年年龄结构 Lotka-Volterra 模型中的人口过度补偿、瞬态和振荡
  • DOI:
    10.1103/physreve.99.012413
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingtao Xia;Xiangting Li;Tom Chou
  • 通讯作者:
    Tom Chou
Modeling Intercellular MAPK Signaling in an Epithelial Wound Healing Assay
  • DOI:
    10.1016/j.bpj.2008.12.1513
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Filippo Posta;Tom Chou
  • 通讯作者:
    Tom Chou
Reconstruction of Energy Profiles from Rupture Times: Application to Force Spectroscopy Experiments
  • DOI:
    10.1016/j.bpj.2010.12.2807
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Pak-Wing Fok;Tom Chou
  • 通讯作者:
    Tom Chou

Tom Chou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Chou', 18)}}的其他基金

Collaborative Research: Understanding Generation, Maintenance, and Dynamics of Immune Diversity via Clone-Count Models
合作研究:通过克隆计数模型了解免疫多样性的产生、维持和动态
  • 批准号:
    1814364
  • 财政年份:
    2018
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
Mathematical Modeling and Quantification of Viral Entry Assays
病毒进入检测的数学建模和定量
  • 批准号:
    1516675
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Mathematics for Microscopy and Cell Biology
显微镜和细胞生物学数学
  • 批准号:
    1032131
  • 财政年份:
    2010
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Hierarchical kinetic models for chemically and hydrodynamically coupled organisms
合作研究:化学和流体动力学耦合生物体的分级动力学模型
  • 批准号:
    1021818
  • 财政年份:
    2010
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Stochastic Inverse Problems in Biophysics
生物物理学中的随机反问题
  • 批准号:
    0349195
  • 财政年份:
    2004
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9804370
  • 财政年份:
    1998
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Fellowship Award

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
  • 批准号:
    2302879
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Nonequilibrium carrier dynamics in two-dimensional heterostructures developed by nanosecond pulse transport analysis
通过纳秒脉冲输运分析开发二维异质结构中的非平衡载流子动力学
  • 批准号:
    23KK0090
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Transport properties and device applications of one-dimensional heterostructure nanotubes
一维异质结构纳米管的输运特性及器件应用
  • 批准号:
    22KF0070
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Simulation studies of the interaction between turbulent and neoclassical transport in three-dimensional magnetic plasma based on the global first principle model
基于全局第一性原理模型的三维磁等离子体中湍流与新古典输运相互作用的模拟研究
  • 批准号:
    23K03364
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning of graph diffusion and transport from high dimensional data with low-dimensional structures
职业:从具有低维结构的高维数据中学习图扩散和传输
  • 批准号:
    2237842
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
ATD: Diffusion and Transport on Graphs: Active Learning, Low-Dimensional Representations, and Anomaly Detection
ATD:图上的扩散和传输:主动学习、低维表示和异常检测
  • 批准号:
    2318894
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Control the transport of phonon in a broad frequency range in low dimensional materials
控制低维材料中宽频率范围内的声子传输
  • 批准号:
    22KJ0627
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Tailored Molecular Transport In Low-Dimensional Hybrid Materials From 1D Nanocrystals And 2D Nanosheets
一维纳米晶体和二维纳米片低维混合材料中的定制分子传输
  • 批准号:
    2202907
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
  • 批准号:
    2210563
  • 财政年份:
    2022
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Transport and optical properties of the interacting electron gas in Weyl semimetals and two-dimensional materials
外尔半金属和二维材料中相互作用电子气的输运和光学性质
  • 批准号:
    RGPIN-2019-06045
  • 财政年份:
    2022
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了