Tailored Molecular Transport In Low-Dimensional Hybrid Materials From 1D Nanocrystals And 2D Nanosheets

一维纳米晶体和二维纳米片低维混合材料中的定制分子传输

基本信息

  • 批准号:
    2202907
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Many important applications in fine chemistry, pharmaceutical research, and other sophisticated purification processes rely on separation processes that effectively separate molecules from solutions and suspension. Current amorphous polymer- or paper-based membranes have random morphologies, poorly controlled porosities, and lack mechanical strength. Balancing the membrane’s permeance and selectivity performance using these materials is also challenging. These combined factors limit the utility of amorphous polymer- and paper-based membranes for fast and effective molecular separations in high-pressure applications. The random morphology of porous polymeric materials with varied pore sizes, shapes, and surface chemistries makes it difficult to rationally design molecular transport properties. Therefore, this project will examine the molecular transport phenomena and materials properties of membranes with long-range ordered low-dimensional structural elements to advance fundamental knowledge and develop new membranes using fibrous and two-dimensional materials. Additionally, this research project will provide graduate and undergraduate students from diverse backgrounds with interdisciplinary research training opportunities, helping prepare them for careers in industry. Undergraduate students at Georgia Tech will also benefit from the investigator’s soft nanomaterials curriculum development efforts.The ultimate research goal of this project is to understand the principles of directional, spatial, and scale-dependent molecular transport in highly organized one- and two-dimensional (1D and 2D) nanostructures with ordered nanochannels and nanosheets as well as fast and enantiotropic selectivity. Such media can potentially be used in membrane-based separations of ions, organic molecules, and even chiral species within the intermediate region at the transition from the nanofiltration and ultrafiltration regimes. The research will explore factors such as the materials’ organized porosity, pore shapes and orientation (channel-like or slit-like), narrow size distribution, and potential chiral-biased interactions to tailor molecular transport and membrane separation performance. The first research objective is synthesizing nanocrystals and nanosheets and modifying the materials’ surfaces to tailor their organization, surface chemistries, and inter-structural interactions, achieving ordered morphologies with controlled pore organization. The second objective is fabricating robust ultrathin membranes with organized helicoidal and stacked structures. The membranes will be fabricated using chemically modified needle-like (1D) cellulose nanocrystals and 2D titanium carbide nanosheets with chiral nematic organization and tailored porosity shape and orientation, pitch length, and local chirality. The performance will be assessed using a set of common dyes in solution. The third objective is to characterize the organized low-dimensional materials' internal nanoscale organization, porosity, orientation, and mechanical performance. This information can be applied to control local and global molecular-nanoscale transport through shortened tortuosity, directional channels, and chiral bias and, thus, for studying the transport of select metal ions, dyes, and chiral molecules. The project will yield a deep fundamental understanding of the complex transport phenomena in organized multiphase membranes with long-range organized nanocrystal and nanosheet assemblies; such knowledge is essential to the design of mechanically robust molecular separation membranes with high permeance, selectivity, and rejection rate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精细化学、药物研究和其他复杂纯化过程中的许多重要应用依赖于从溶液和悬浮液中有效分离分子的分离过程。目前的无定形聚合物或纸基膜具有随机形态、控制不良的孔隙率,并且缺乏机械强度。使用这些材料平衡膜的渗透性和选择性性能也具有挑战性。这些综合因素限制了无定形聚合物和纸基膜在高压应用中用于快速有效的分子分离的效用。具有不同孔径、形状和表面化学性质的多孔聚合物材料的随机形态使得合理设计分子传输性能变得困难。因此,本项目将研究具有长程有序低维结构元素的膜的分子传输现象和材料特性,以推进基础知识并开发使用纤维和二维材料的新膜。此外,该研究项目将为来自不同背景的研究生和本科生提供跨学科研究培训机会,帮助他们为行业职业做好准备。格鲁吉亚理工学院的本科生也将受益于研究者的软纳米材料课程开发工作。该项目的最终研究目标是了解具有有序纳米通道和纳米片以及快速和各向异性选择性的高度有序的一维和二维(1D和2D)纳米结构中的方向,空间和尺度依赖的分子传输原理。这样的介质可以潜在地用于离子、有机分子、甚至在从纳滤和超滤方案过渡的中间区域内的手性物质的基于膜的分离。该研究将探索诸如材料的组织孔隙率,孔形状和方向(通道状或狭缝状),窄尺寸分布以及潜在的手性偏置相互作用等因素,以调整分子传输和膜分离性能。第一个研究目标是合成纳米晶体和纳米片,并修改材料的表面,以定制它们的组织,表面化学和结构间的相互作用,实现有序的形态与受控的孔组织。第二个目标是制造具有有组织的螺旋和堆叠结构的坚固的膜。该膜将使用化学改性的针状(1D)纤维素纳米晶体和2D碳化钛纳米片与手性组织和定制的孔隙率形状和取向,间距长度和局部手性。将使用溶液中的一组常见染料评估性能。第三个目标是表征有组织的低维材料的内部纳米级组织、孔隙率、取向和机械性能。这些信息可以应用于控制本地和全球的分子纳米尺度的运输,通过缩短曲折,定向通道,和手性偏置,因此,用于研究选择的金属离子,染料和手性分子的运输。该项目将产生在有组织的多相膜与长距离有组织的纳米和纳米片组件的复杂传输现象的深刻的基本理解;这些知识对于设计具有高渗透性,选择性,该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Tsukruk其他文献

Changes of liquid-crystalline polymer structure with temperature
  • DOI:
    10.1007/bf01045338
  • 发表时间:
    1984-06-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Vladimir Tsukruk;Valery Shilov;Oksana Lokhonya;Yury Lipatov
  • 通讯作者:
    Yury Lipatov

Vladimir Tsukruk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Tsukruk', 18)}}的其他基金

Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
  • 批准号:
    2404081
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303580
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Synthesis and Assembly 2D Heterostructured Hybrid Stacks
合成和组装 2D 异质结构混合堆栈
  • 批准号:
    2200366
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Bio-Optical Computing Devices: Multi-Valued Logic Elements via Photonic Bio-Materials
生物光学计算设备:通过光子生物材料的多值逻辑元件
  • 批准号:
    2203806
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Percolated morphologies of branched-star poly(ionic liquid)s
支化星型聚离子液体的渗透形貌
  • 批准号:
    2001968
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Synthesis and Reversible Self-Assembly of Monodisperse Plasmonic Nanorods Permanently Ligated with Photoresponsive Polymers
光响应聚合物永久连接单分散等离子体纳米棒的合成与可逆自组装
  • 批准号:
    1903957
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Flexible Bioenabled Chiral Lasing Materials
柔性生物赋能手性激光材料
  • 批准号:
    1803495
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
SYNTHESIS, ASSEMBLY, AND ELECTROCHROMIC BEHAVIOR OF NANOSTRUCTURED CONJUGATED POLYMER/METAL INTERFACES
纳米结构共轭聚合物/金属界面的合成、组装和电致变色行为
  • 批准号:
    1506046
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Responsive Branched Miktoarm and Ionic-Liquid Materials
响应性支化臂和离子液体材料
  • 批准号:
    1505234
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Nanostructured Surfaces with Selective Biotraps for Sensing
具有用于传感的选择性生物陷阱的纳米结构表面
  • 批准号:
    1401720
  • 财政年份:
    2014
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Understanding Dielectrophoretic Molecular Transport
职业:了解介电泳分子传输
  • 批准号:
    2337878
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
  • 批准号:
    23K26489
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
  • 批准号:
    23H01796
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Charge Transport in Symmetry Breaking Conjugated Molecular Materials: Experimental Approach by Conductivity Measurements under CPL Excitation
对称破缺共轭分子材料中的电荷传输:CPL 激励下电导率测量的实验方法
  • 批准号:
    23KF0045
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a group of particle transport codes connecting the wall, peripheral, and core regions including dependence of ro-vibrational states of molecular hydrogen
开发一组连接壁、外围和核心区域的粒子传输代码,包括分子氢的旋转振动状态的依赖性
  • 批准号:
    23K03362
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-depth molecular studies of dynein transport in the RPE
RPE 中动力蛋白运输的深入分子研究
  • 批准号:
    10573020
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Molecular Mechanisms of Copper Transport
铜传输的分子机制
  • 批准号:
    10817407
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Molecular Mechanisms of Wnt Transport
Wnt 转运的分子机制
  • 批准号:
    10753139
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
ERI: Evaluating Single-Walled Zeolitic Nanotubes for Separation Applications: Adsorption and Transport via Molecular Simulations
ERI:评估单壁沸石纳米管的分离应用:通过分子模拟进行吸附和传输
  • 批准号:
    2301722
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying heme transport at the blood-brain barrier and its role in angiogenesis
血红素在血脑屏障转运的分子机制及其在血管生成中的作用
  • 批准号:
    10572752
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了