Conical Intersections and Nuclear Dynamics: A New Look at an Old Problem

圆锥形交点和核动力学:对老问题的新看法

基本信息

  • 批准号:
    0206834
  • 负责人:
  • 金额:
    $ 30.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

David Yarkony of Johns Hopkins University is supported by the Theoretical and Computational Chemistry Program to study electronically nonadiabatic processes, in which nuclear motion is not restricted to a single Born-Oppenheimer potential energy surface. The role played by conical intersections in nonadiabatic dynamics is a particular focus. The formal and computational tools to develop a fully adiabatic picture of a spin nonconserving, electronically nonadiabatic process for a system with an odd number of electrons will be developed. These tools will be extended to locate and characterize conical intersections with the spin-orbit interaction included in order to treat the most general situation. For the first time, the locus of this type of conical intersection seam will be determined. The reactions of molecular hydrogen with both ground and excited state OH and SH radicals will be investigated to address the effect of increasing spin-orbit coupling. As well, the predissociation of electronically excited OClO, OBrO, and ultimately OIO will be considered. A clearer picture of the relation between the local topography of a conical intersection and the outcome of the nonadiabatic event is expected to emerge from this research. Understanding molecular potential energy surface crossings is crucially important for describing chemical reactions that involve electronically excited states. The task of describing this topic in quantum chemistry its extremely difficult, and likely to be advanced significantly in this project. Successful outcomes will have a major impact on the characterization of chemical reactions initiated by light absorption.
约翰·霍普金斯大学的 David Yarkony 得到理论和计算化学项目的支持,研究电子非绝热过程,其中核运动不限于单个玻恩-奥本海默势能表面。 圆锥形交叉点在非绝热动力学中所扮演的角色是一个特别关注的焦点。 将开发用于开发具有奇数电子的系统的自旋非守恒、电子非绝热过程的完全绝热图像的形式和计算工具。 这些工具将扩展到定位和表征圆锥形交叉点,并包含自旋轨道相互作用,以处理最一般的情况。 首次确定此类圆锥形相交接缝的轨迹。 将研究分子氢与基态和激发态 OH 和 SH 自由基的反应,以解决增加自旋轨道耦合的影响。 此外,还将考虑电子激发的 OClO、OBrO 和最终 OIO 的预解离。 这项研究预计将更清楚地说明圆锥形交叉点的局部地形与非绝热事件的结果之间的关系。了解分子势能表面交叉对于描述涉及电子激发态的化学反应至关重要。 在量子化学中描述这一主题的任务极其困难,并且可能在该项目中取得显着进展。 成功的结果将对光吸收引发的化学反应的表征产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Yarkony其他文献

David Yarkony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Yarkony', 18)}}的其他基金

Extending the Range of Nonadiabatic Processes that Can Be Treated with Analytic Representations of Coupled Potential Energy Surfaces
扩展可以用耦合势能面的解析表示处理的非绝热过程的范围
  • 批准号:
    1954723
  • 财政年份:
    2020
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Diabatic Representations:New Tools, New Uses and their Application to the Study of Nonadiabatic Processes Influenced by Conical Intersections
非绝热表示:新工具、新用途及其在圆锥相交影响的非绝热过程研究中的应用
  • 批准号:
    1663692
  • 财政年份:
    2017
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
New Algorithms and their Use in the Study of Nonadiabatic Processes Influenced by Conical Intersections
新算法及其在受圆锥相交影响的非绝热过程研究中的应用
  • 批准号:
    1361121
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
New Tools and their Application for the study of nonadiabatic processes influenced by conical intersections
研究受圆锥相交影响的非绝热过程的新工具及其应用
  • 批准号:
    1010644
  • 财政年份:
    2010
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
On the Role of Conical Intersections in Nonadiabatic Processes: Beyond the Two Dimensional Cone
关于圆锥相交在非绝热过程中的作用:超越二维圆锥
  • 批准号:
    0513952
  • 财政年份:
    2005
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Electronic Structure and Dynamical Aspects of Electronically Nonadiabatic Processes
电子非绝热过程的电子结构和动力学方面的理论研究
  • 批准号:
    9700771
  • 财政年份:
    1997
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Electronic Structure and Dynamical Aspects of Electronically Nonadiabatic Processes
电子非绝热过程的电子结构和动力学方面的理论研究
  • 批准号:
    9404193
  • 财政年份:
    1994
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Spin-Forbidden and Electronically Nonadiabatic Processes
自旋禁止和电子非绝热过程的理论研究
  • 批准号:
    9103299
  • 财政年份:
    1991
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Spin-Forbidden, and Electronically Nonadiabatic, Chemical Processes Using Ab Initio Electronic Structure Techniques
使用从头算电子结构技术进行自旋禁阻和电子非绝热化学过程的理论研究
  • 批准号:
    8723020
  • 财政年份:
    1988
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Studies of Nonadiabatic Effects in Chemical Systems Using Newly Developed Ab Initio Electronic Structure Methods
使用新开发的从头算电子结构方法研究化学系统中的非绝热效应
  • 批准号:
    8421381
  • 财政年份:
    1985
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant

相似海外基金

A real-time traffic signal system for safe and efficient intersections
实时交通信号系统,确保安全高效的十字路口
  • 批准号:
    LP220100226
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Linkage Projects
Doctoral Dissertation Research: Intersections of Labor, Language, and Value in the Production of Emerging Technologies
博士论文研究:新兴技术生产中的劳动力、语言和价值的交叉点
  • 批准号:
    2343003
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Mood 'n Heart: intersections between mood disorders and cardiometabolic health.
情绪与心脏:情绪障碍与心脏代谢健康之间的交叉点。
  • 批准号:
    485657
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Miscellaneous Programs
Understanding the Intersections between Care Experience and Ethnicity in Criminal Justice Involvement
了解刑事司法参与中护理经验与种族之间的交叉点
  • 批准号:
    ES/W002221/2
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Fellowship
Partnership to Assess Viral and Immune Landscape Intersections with ONcology for People Living with HIV (PAVILION)
与肿瘤学合作评估艾滋病病毒感染者的病毒和免疫景观交叉点 (PAVILION)
  • 批准号:
    10598373
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
  • 批准号:
    2324706
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Exploring health equity for Asian American, Native Hawaiian, and Pacific Islander Adolescents in a large epidemiologic study: Intersections of ethnicity, sexual orientation, and gender identity
在大型流行病学研究中探索亚裔美国人、夏威夷原住民和太平洋岛民青少年的健康公平性:种族、性取向和性别认同的交叉点
  • 批准号:
    10645666
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
Trowels, Trenches and #TransRights: Intersections of Archaeology, Transphobia and Liberation Politics
抹子、沟槽和
  • 批准号:
    2888315
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Studentship
Some problems on unlikely intersections
不太可能的交叉路口的一些问题
  • 批准号:
    2906374
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Studentship
Low threshold economic engagement and health equity in inner-city populations: Assessing intersections of economic engagement, work, and health using The ASSET Study
内城区人口的低门槛经济参与和健康公平:利用 ASSET 研究评估经济参与、工作和健康的交叉点
  • 批准号:
    500543
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了