On the Factorization of Lacunary Polynomials
关于无缺多项式的因式分解
基本信息
- 批准号:0207302
- 负责人:
- 金额:$ 15.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Filaseta0207302 The investigator and his collaborator Douglas Meade developand implement efficient algorithms for irreducibility testing andfactorization of polynomials with small Euclidean norm. Inaddition, they classify through similar algorithms all caseswhere reducibility occurs with Euclidean norm bounded by someprescribed amount. Issues relating to the complexity andparallel implementation of such algorithms are considered. Both factoring and, more generally, computationalmathematics have played a vital role in cryptography. Theimportance of algorithms in such applications continues toincrease as technology advances. This project deals withfactoring polynomials of high degree from both a theoretical andcomputational point of view. The work has application incryptography and in complexity theory, which deals with thequestion of how much work is needed to solve certain kinds ofproblems.
Filaseta0207302和他的合作者Douglas Meade开发并实现了小欧氏范数多项式的不可约性检验和因式分解的高效算法。此外,它们还通过类似的算法对欧几里得范数有界于某一规定量的可约性进行分类。考虑了与这些算法的复杂性和并行实现有关的问题。因式分解,更广泛地说,计算数学在密码学中都发挥了至关重要的作用。随着技术的进步,算法在这类应用中的重要性不断增加。这个项目从理论和计算的角度处理高次分解多项式。这项工作在密码学和复杂性理论中都有应用,它涉及到需要多少工作才能解决某些类型的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Filaseta其他文献
49598666989151226098104244512918
- DOI:
10.1016/j.jnt.2013.11.001 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Michael Filaseta;Samuel Gross - 通讯作者:
Samuel Gross
A distribution problem for powerfree values of irreducible polynomials
- DOI:
10.1023/a:1015204825565 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:0.500
- 作者:
Brian Beasley;Michael Filaseta - 通讯作者:
Michael Filaseta
Michael Filaseta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Filaseta', 18)}}的其他基金
Mathematical Sciences: Finite Difference Techniques and Irreducibility Theorems in Analytic Number Theory
数学科学:解析数论中的有限差分技术和不可约性定理
- 批准号:
9400937 - 财政年份:1994
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Mathematical Sciences: Gaps Between k-Free Numbers, Finite Differences, and Exponential Sums
数学科学:k-自由数、有限差分和指数和之间的差距
- 批准号:
8903123 - 财政年份:1989
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
相似海外基金
Synthesis of Diatomic Adjacent Alloys with Lacunary Polyoxotungstate as "Molecular Crucible"
以空位多钨酸盐为“分子坩埚”合成双原子邻接合金
- 批准号:
18K18997 - 财政年份:2018
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Galois Groups of Some Lacunary Polynomials
一些有缺项多项式的伽罗瓦群
- 批准号:
497642-2016 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
University Undergraduate Student Research Awards
Synthesis of Novel Functionalized Polyoxometalates Utilizing Chemical Reaction Fields of the Lacunary Species
利用缺位物质的化学反应场合成新型功能化多金属氧酸盐
- 批准号:
18550062 - 财政年份:2006
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of stochastic numerics and probability theory via lacunary series
通过缺位级数发展随机数值和概率论
- 批准号:
17340029 - 财政年份:2005
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Exponential Polynomials, Lacunary Series; Weighted Norm Inequalities
数学科学:指数多项式、空位级数;
- 批准号:
9706775 - 财政年份:1997
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Lacunary series に関する解析
空位系列分析
- 批准号:
X00210----374043 - 财政年份:1978
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Research Initiation For Minority Institution Improvement- Convergence of Lacunary Trigonometric Series on Zero Dimensional Groups
少数民族制度改进研究启动——零维群上空位三角级数的收敛性
- 批准号:
7704596 - 财政年份:1977
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant














{{item.name}}会员




