Southeastern Number Theory Meetings

东南数论会议

基本信息

项目摘要

On September 15-16, 2012, Wake Forest University (Winston-Salem, NC) is planning to hold the first of three Southeastern Number Theory Meetings being supported by funding for this proposal. This will be organized by Jeremy Rouse and John Webb. A second conference is planned for December 1-2 at the University of South Carolina (Columbia, SC), and a third conference is planned for the Spring of 2013 at High Point University (High Point, NC). Further information for these meetings will be linked to the conference pages http://www.math.sc.edu/~boylan/seminars/pantshome.html and http://www.math.clemson.edu/~kevja/SERMON/ as the organization of these meetings progresses. An important goal of these meetings is to provide the community in the southeast region with knowledge of the current trends and developments in research topics in number theory. Prominent researchers in number theory from outside the region are brought to the southeast to help achieve this goal. The primary research topics for these meetings include analytic number theory, arithmetic geometry, and automorphic and modular forms. The frequency and regularity of the meetings promotes collaboration and strengthens working relationships between participants.There are two main conferences held annually in the southeast that bring together those working on research in number theory. The Palmetto Number Theory Series is a series of number theory meetings managed jointly by Clemson University and the University of South Carolina, the two flagship public research institutions in South Carolina, the Palmetto State. The SouthEast Regional Meeting On Numbers is a larger regional meeting that has been in effect since the late 1980's. These meetings inspire collaboration and broaden the scope of existing research interests within the general subject of number theory. One objective of these meetings is to involve number theorists at all career stages and types of institutions at minimal cost. Speakers include graduate students, junior faculty, and senior faculty. The meetings have, in particular, provided an important service to students and young researchers in this region working in number theory, strengthening their knowledge of this research area and allowing them to disseminate their work while at the same time obtaining insightful input from other participants. These participants come from Ph.D. granting institutions, institutions whose highest degree awarded is a master's degree, and from institutions granting only baccalaureate degrees. The organizers will also continue to attract a demographically diverse participant base, including women and other underrepresented groups.
2012年9月15日至16日,维克森林大学(Winston-Salem, NC)计划召开三次东南数论会议中的第一次会议,该会议由该提案的资金支持。这将由Jeremy Rouse和John Webb组织。第二次会议计划于12月1日至2日在南卡罗莱纳大学(哥伦比亚,南卡罗来纳州)举行,第三次会议计划于2013年春季在高点大学(北卡罗来纳州高点)举行。随着会议组织的进展,这些会议的进一步信息将链接到会议页面http://www.math.sc.edu/~boylan/seminars/pantshome.html和http://www.math.clemson.edu/~kevja/SERMON/。这些会议的一个重要目标是为东南地区的社区提供有关数论研究主题的当前趋势和发展的知识。数论领域的杰出研究人员从外地被带到东南,以帮助实现这一目标。这些会议的主要研究主题包括解析数论、算术几何、自同构和模形式。会议的频率和规律性促进了参与者之间的合作和加强了工作关系。每年在美国东南部举行两次主要会议,把数论研究人员聚集在一起。棕榈数论系列会议是由克莱姆森大学和南卡罗来纳大学联合举办的一系列数论会议,这两所大学是南卡罗来纳州棕榈州的两所旗舰公共研究机构。东南区域数字会议是一个更大的区域会议,自20世纪80年代末以来一直有效。这些会议激发了合作,并在数论的一般主题中扩大了现有研究兴趣的范围。这些会议的目标之一是以最低的成本让所有职业阶段和各类机构的数论学家参与进来。演讲者包括研究生、初级教员和高级教员。这些会议尤其为该地区从事数论工作的学生和年轻研究人员提供了重要的服务,加强了他们对该研究领域的认识,并使他们能够传播他们的工作,同时从其他参与者那里获得有见地的意见。这些参与者来自授予博士学位的机构,授予最高学位为硕士学位的机构,以及仅授予学士学位的机构。组织者还将继续吸引人口结构多样化的参与者,包括妇女和其他代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Filaseta其他文献

49598666989151226098104244512918
  • DOI:
    10.1016/j.jnt.2013.11.001
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Filaseta;Samuel Gross
  • 通讯作者:
    Samuel Gross
A distribution problem for powerfree values of irreducible polynomials
  • DOI:
    10.1023/a:1015204825565
  • 发表时间:
    2001-02-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Brian Beasley;Michael Filaseta
  • 通讯作者:
    Michael Filaseta

Michael Filaseta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Filaseta', 18)}}的其他基金

On the Factorization of Lacunary Polynomials
关于无缺多项式的因式分解
  • 批准号:
    0207302
  • 财政年份:
    2002
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Finite Difference Techniques and Irreducibility Theorems in Analytic Number Theory
数学科学:解析数论中的有限差分技术和不可约性定理
  • 批准号:
    9400937
  • 财政年份:
    1994
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gaps Between k-Free Numbers, Finite Differences, and Exponential Sums
数学科学:k-自由数、有限差分和指数和之间的差距
  • 批准号:
    8903123
  • 财政年份:
    1989
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Research Grant
Analytic Number Theory at the Interface
界面上的解析数论
  • 批准号:
    2401106
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Discovery Projects
Conference: Southern Regional Number Theory Conference
会议:南方区域数论会议
  • 批准号:
    2341365
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Conference: Comparative Prime Number Theory Symposium
会议:比较素数论研讨会
  • 批准号:
    2411537
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
  • 批准号:
    2401305
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了