Large Eddy Simulation: Mathematical theory and Numerical Analysis
大涡模拟:数学理论与数值分析
基本信息
- 批准号:0207627
- 负责人:
- 金额:$ 13.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large eddy simulation is widely considered to be the most promising approach to simulating turbulence and its mathematical validation and development are important to its further evolution. Current eddy-viscosity models are of limited usefulness in long time simulations because they can overly diffuse the large structures. They are of limited accuracy because their connection to the physics of turbulent fluctuations is tenuous. Layton will first test an improved eddy viscosity model which arises from a more careful mathematical description of the involved physical processes and which is less diffusive than the Smagorinsky model. A second idea of eddy viscosity acting only on the finest resolved scales will be investigated. Most present de-convolution models are limited by an incorrect under-attenuation of high frequencies and an incorrect global kinetic energy balance. The proposed research on de-convolution models will seek to correct both difficulties. The usefulness of LES in industrial applications is severely limited by the crude near wall models currently used. Layton has developed improved near wall models for channel flow with the correct double-asymptotics (Re - infinity and delta - 0). These will be extended to produce nonlinear near wall models suitable for recirculating flows. Layton will also investigate a new variational multiscale method based on a multiscale decomposition of the fluid stresses rather than fluid velocities.Layton proposes to continue the mathematical development of large eddy simulation. Large eddy simulation addresses the problem of predicting, using mathematical analysis, physical modeling and high performance computing, the large, energetic eddies (or swirls) in the flow of fluids at high Reynolds numbers. This problem is a core difficulty in many important applications such as global change studies, geophysics and the environment, aeronautics and aerospace applications and even in the design of artificial hearts. Large eddy simulation is widely considered to be the most promising approach to simulating turbulence and its mathematical validation and development is important to its further evolution. This proposal aims to improve eddy-viscosity models, de-convolution models, and near-wall models by a thorough mathematical analysis.
大涡模拟被广泛认为是最有前途的湍流模拟方法,其数学验证和发展对大涡模拟的进一步发展至关重要。目前的涡粘性模型在长时间模拟中的有用性有限,因为它们会过度扩散大的结构。它们的准确性有限,因为它们与湍流涨落物理学的联系是脆弱的。 莱顿将首先测试一种改进的涡流粘度模型,该模型是从对所涉及的物理过程进行更仔细的数学描述中产生的,并且比Smagorinsky模型扩散性更小。 第二个想法的涡粘性只作用于最精细的解决尺度将进行调查。大多数现有的去卷积模型受到不正确的高频欠衰减和不正确的全局动能平衡的限制。 拟议的去卷积模型研究将寻求纠正这两个困难。LES在工业应用中的有用性受到目前使用的粗糙近壁模型的严重限制。 莱顿发展了改进的近壁模型,具有正确的双渐近性(Re -无穷大和delta - 0)。 这些将被扩展到产生非线性近壁模型适合于再循环流。 莱顿还将研究一种新的变分多尺度方法,该方法基于流体应力而不是流体速度的多尺度分解。莱顿建议继续大涡模拟的数学发展。 大涡模拟解决了预测问题,使用数学分析,物理建模和高性能计算,在高雷诺数的流体流动中的大的,充满活力的涡流(或漩涡)。这一问题是全球变化研究、地球物理与环境、航空航天应用乃至人工心脏设计等许多重要应用中的核心难题。大涡模拟被广泛认为是最有前途的湍流模拟方法,其数学验证和发展对大涡模拟的进一步发展至关重要。该建议旨在通过彻底的数学分析来改进涡粘性模型、去卷积模型和近壁模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Layton其他文献
Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes-Darcy system
- DOI:
https://doi.org/10.1016/j.cma.2020.112923 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Yi Li;Yanren Hou;William Layton;Haiyun Zhao - 通讯作者:
Haiyun Zhao
On a 1/2-equation model of turbulence
湍流的 1/2 方程模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rui Fang;Weiwei Han;William Layton - 通讯作者:
William Layton
The Ramshaw-Mesina Hybrid Algorithm applied to the Navier Stokes Equations
Ramshaw-Mesina 混合算法应用于纳维斯托克斯方程
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aytekin Çıbık;Farjana Siddiqua;William Layton - 通讯作者:
William Layton
Time filters and spurious acoustics in artificial compression methods
人工压缩方法中的时间滤波器和杂散声学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
A. Guzel;William Layton;Michael McLaughlin;Y. Rong - 通讯作者:
Y. Rong
Numerical analysis of a 1/2-equation model of turbulence
- DOI:
10.1016/j.physd.2024.134428 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Wei-Wei Han;Rui Fang;William Layton - 通讯作者:
William Layton
William Layton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Layton', 18)}}的其他基金
Time Accurate Prediction of Fluid Motion
流体运动的时间精确预测
- 批准号:
2110379 - 财政年份:2021
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
Numerical Analysis of Non-Equilibrium Turbulence
非平衡湍流的数值分析
- 批准号:
1522267 - 财政年份:2015
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
Partitioning of Coupled Flow Problems
耦合流问题的划分
- 批准号:
1216465 - 财政年份:2012
- 资助金额:
$ 13.66万 - 项目类别:
Continuing Grant
Numerical Analysis, Analysis and Modeling of Fluid Motion
流体运动的数值分析、分析和建模
- 批准号:
0810385 - 财政年份:2008
- 资助金额:
$ 13.66万 - 项目类别:
Continuing Grant
Mathematical Development of Large Eddy Simulation of Turbulence
湍流大涡模拟的数学发展
- 批准号:
0508260 - 财政年份:2005
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
U.S.- Germany Cooperative Research: Finite Element Algorithm Development for 3-D Fluid Flow Problems
美德合作研究:3-D 流体流动问题的有限元算法开发
- 批准号:
9814115 - 财政年份:1999
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
Numerical Analysis of Large Eddy Simulation
大涡模拟数值分析
- 批准号:
9972622 - 财政年份:1999
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
U.S.-Venezuela Cooperative Research: Mathematical Modelling, Algorithm Development and Simulation of Aluminum Reduction Cells
美国-委内瑞拉合作研究:铝电解槽的数学建模、算法开发和模拟
- 批准号:
9805563 - 财政年份:1998
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Element Methods For Incompressible, Viscous Flows
数学科学:不可压缩粘性流的有限元方法
- 批准号:
9400057 - 财政年份:1994
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
- 批准号:
EP/X031640/1 - 财政年份:2023
- 资助金额:
$ 13.66万 - 项目类别:
Research Grant
Building-Block-Flow Model for Large-Eddy Simulation
用于大涡模拟的积木流模型
- 批准号:
2317254 - 财政年份:2023
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
Large Eddy Simulation in Complex Turbulent Flows with Coarse Resolution
复杂湍流中的粗分辨率大涡模拟
- 批准号:
2321473 - 财政年份:2023
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
- 批准号:
2215472 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
EAGER: Experimental investigation of physical-space scalar structure and unresolved mixing to improve large-eddy simulation of turbulent combustion
EAGER:物理空间标量结构和未解决的混合的实验研究,以改进湍流燃烧的大涡模拟
- 批准号:
2208136 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
CAREER: Understanding Low-cloud Feedbacks Using Large-eddy Simulation of Spatially Developing Cloud Transitions
职业:利用空间发展云转变的大涡模拟来理解低云反馈
- 批准号:
2143276 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Standard Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
- 批准号:
RGPIN-2022-05155 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Discovery Grants Program - Individual
Applying large eddy simulation to dissipative particle dynamics modeling toward better understanding of complex flow phenomena
将大涡模拟应用于耗散粒子动力学建模,以更好地理解复杂的流动现象
- 批准号:
22K03904 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-Order Unstructured Methods for Large Eddy Simulation and Shape Optimization
用于大涡模拟和形状优化的高阶非结构化方法
- 批准号:
RGPIN-2017-06773 - 财政年份:2022
- 资助金额:
$ 13.66万 - 项目类别:
Discovery Grants Program - Individual