Computational Methods for the Solution of Three-Dimensiional Inverse Acoustic and Elastoacoustic Scattering Problems

求解三维逆声学和弹声散射问题的计算方法

基本信息

  • 批准号:
    0209297
  • 负责人:
  • 金额:
    $ 22.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to enable an efficient solution by a regularized Newton method of three-dimensional inverse acoustic and elastoacoustic scattering problems. The research will be based upon three cornerstones. The convergence analysis of the regularized Newton method will be performed to establish confidence in this approach and shed some light on the selection of the regularization parameter. In order to ensure the stability, fast convergence, and computational efficiency of this iterative solution strategy, the characterization of the Frechet derivatives of the scattered field with respect to the shape parameters and the Finite Element Tearing and Interconnecting Helmholtz (FETI-H) domain decomposition method will be extended to address coupled elastoacoustic problems. Since the far-field pattern is in general measured only in a limited aperture, two different approaches for reconstructing the full aperture data will also be investigated.The determination of the shape of an obstacle from its effects on known acoustic or electromagnetic waves is an important problem in many technologies such as sonar, radar, geophysical exploration, medical imaging and nondestructive testing. This project will develop an efficient computational method for the inverse acoustic scattering problem. The proposed methodologies also have a great potential for benefiting the infrastructure of computational sciences.
本计画的目标是利用正规化牛顿法,有效地求解三维逆声波与弹性声波散射问题。这项研究将基于三个基石。 正则化牛顿法的收敛性分析将被执行,以建立这种方法的信心,并揭示了一些正则化参数的选择。为了确保这种迭代求解策略的稳定性,快速收敛和计算效率,散射场的Frechet导数相对于形状参数和有限元撕裂和互连亥姆霍兹(FETI-H)区域分解方法的表征将扩展到解决耦合弹性声学问题。由于远场模式通常只能在有限孔径内测量,因此还将研究两种不同的方法来重建全孔径数据。根据障碍物对已知声波或电磁波的影响来确定障碍物的形状是声纳、雷达、地球物理勘探、医学成像和无损检测等许多技术中的一个重要问题。本计画将发展一种有效的计算方法来求解逆声散射问题。所提出的方法也有很大的潜力,有利于计算科学的基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rabia Djellouli其他文献

Rabia Djellouli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rabia Djellouli', 18)}}的其他基金

Computational Methods for the Solution of Three-Dimensiional Inverse Acoustic and Elastoacoustic Scattering Problems
求解三维逆声学和弹声散射问题的计算方法
  • 批准号:
    0406617
  • 财政年份:
    2003
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Standard Grant
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improvement of methods for searching vast solution spaces of tension-compression mixed form-finding problems of shells.
壳拉压混合找形问题大解空间搜索方法的改进。
  • 批准号:
    23K17784
  • 财政年份:
    2023
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Enabling new characterisation methods for dynamic systems through the upgrade of 700 MHz solution NMR spectrometer
通过升级 700 MHz 溶液核磁共振波谱仪,为动态系统提供新的表征方法
  • 批准号:
    BB/W020297/1
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Research Grant
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Discovery Grants Program - Individual
Business Cycle Accounting with Non-linear Solution Methods
非线性求解方法的经济周期会计
  • 批准号:
    22K01394
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scheduling and Resource Allocation for Improving Service and Operations Management: Modelling, Solution Methods and Applications (especially in Healthcare)
用于改进服务和运营管理的调度和资源分配:建模、解决方案方法和应用(特别是在医疗保健领域)
  • 批准号:
    RGPIN-2018-06219
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
  • 批准号:
    RGPIN-2022-04571
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Convex relaxation of problems in data science and efficient solution methods
数据科学中问题的凸松弛及高效解决方法
  • 批准号:
    RGPIN-2020-04096
  • 财政年份:
    2022
  • 资助金额:
    $ 22.15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了